当前位置: 首页 > news >正文

做网站的材料百度快照怎么使用

做网站的材料,百度快照怎么使用,网站建设入门书,py做网站文章目录 神经网络模型的构成BP神经网络 神经网络模型的构成 三种表示方式: 神经网络的三要素: 具有突触或连接,用权重表示神经元的连接强度具有时空整合功能的输入信号累加器激励函数用于限制神经网络的输出 感知神经网络 BP神经网络 …

文章目录

  • 神经网络模型的构成
  • BP神经网络

神经网络模型的构成

三种表示方式:
在这里插入图片描述
神经网络的三要素:

  1. 具有突触或连接,用权重表示神经元的连接强度
  2. 具有时空整合功能的输入信号累加器
  3. 激励函数用于限制神经网络的输出

感知神经网络
在这里插入图片描述

BP神经网络

BP神经网络的学习由信息的正向传播和误差的反向传播两个过程组成,学习规则采用W-H学习规则(最小均方差,梯度下降法),通过反向传播,不断调整网络的权重和阈值,使得网络的误差平方和最小。

BP神经网络模型通用描述:
z ( k ) = w ( k ) x ( k ) + b ( k ) y ( k ) = f ( z ( k ) ) z^{(k)} = w^{(k)}x^{(k)} + b^{(k)} \\y^{(k)} = f(z^{(k)}) z(k)=w(k)x(k)+b(k)y(k)=f(z(k))

o ( k ) = f ( w ( k ) o ( k − 1 ) + b ( k ) ) o^{(k)} = f(w^{(k)}o^{(k - 1)} + b^{(k)}) o(k)=f(w(k)o(k1)+b(k))

损失函数的构建 E = 1 2 n ∑ p = 1 n ( T p − Q p ) 2 E = \frac{1}{2n} \sum\limits_{p=1}^{n}(T_p - Q_p)^2 E=2n1p=1n(TpQp)2
预测的输出值减期望的输出值的均方差

梯度下降法:
W ( k + 1 ) = W k − a ∗ α α w k ∗ E ( w k , b k ) b ( k + 1 ) = b k = a ∗ α α b k ∗ E ( w k , b k ) W_{(k +1)} = W_{k} - a * \frac{\alpha}{\alpha w_k} * E(w_k, b_k) \\ b_{(k + 1)} = b_k = a * \frac{\alpha}{\alpha b_k} * E(w_k, b_k) W(k+1)=WkaαwkαE(wk,bk)b(k+1)=bk=aαbkαE(wk,bk)

而:
α α w k ∗ E = 1 2 m ∗ ∑ i = 1 m ∗ 2 ∗ ( w k x i + b − y i ) ∗ x i α α b k ∗ E = 1 2 m ∗ ∑ i = 1 m ∗ 2 ∗ ( w k x i + b − y i ) \frac{\alpha}{\alpha w_k} * E = \frac{1}{2m} * \sum\limits_{i = 1}^{m} *2 * (w_k x^i + b - y^i) * x^i \\ \frac{\alpha}{\alpha b_k} * E = \frac{1}{2m} * \sum\limits_{i = 1}^{m} *2 * (w_k x^i + b - y^i) αwkαE=2m1i=1m2(wkxi+byi)xiαbkαE=2m1i=1m2(wkxi+byi)

当采用sigmoid激活函数:
导数: f ′ ( n e t j l ) = f ( n e t j l ) ( 1 − f ( n e t j l ) ) f'(net^l_j) = f(net^l_j)(1 - f(net^l_j)) f(netjl)=f(netjl)(1f(netjl))
( 1 1 + e − z ) ′ = ( 1 1 + e − z ) ∗ ( 1 − 1 1 + e − z ) (\frac{1}{1 + e^{-z}})' = (\frac{1}{1 + e^{-z}}) * (1 - \frac{1}{1 + e^{-z}}) (1+ez1)=(1+ez1)(11+ez1)
对于交叉熵损失函数有:
在这里插入图片描述
例题:
给定神经网络如下:
在这里插入图片描述
输入值为:x1, x2 = 0.5, 0.3
期望输出值为y1, y2 = 0.23, -0.07
给出正向传播的初始参数为 w 1 w_1 w1~ w 8 w_8 w8为0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8
采用平方损失函数,梯度下降法求解第一轮更新后的参数。

在这里插入图片描述

训练步骤

  1. 表达:计算训练的输出矢量 A = W ∗ P + B A = W * P + B A=WP+B,以及与期望输出之间的误差;
  2. 检查:将网络输出误差的平方和与期望误差相比较,如果其值小于期望误差,或训练以达到实现设定的最大训练次数,则停止训练;否则继续。
  3. 学习:采用最小均方差和梯度下降方法计算权值和偏差,并返回到1

BP算法的改进

  1. 带动量因子算法
  2. 自适应学习速率
  3. 改变学习速率的方法
  4. 作用函数后缩法
  5. 改变性能指标函数
http://www.dinnco.com/news/59532.html

相关文章:

  • 政府网站建设管理 书如何在百度做免费推广产品
  • 网站制作建设兴田德海底捞口碑营销
  • u网站建设关键词排名的工具
  • 来宾网站建设网站建站价格
  • 网站如何做视频教程seo快速推广
  • 嘉定企业网站开发新闻头条最新消息摘抄
  • 广州设计网站培训学校百度pc端入口
  • 怎样进行文化建设南宁网络优化seo费用
  • 个人域名可以做企业网站吗网上教育培训机构排名
  • 湖南酒店网站建设免费建站哪个比较好
  • 网站建设优化陕西搜索网页内容
  • 怎样在百度免费做网站手机创建网站教程
  • 做网站如何语音常见的营销手段
  • 网站没有索引量是什么意思青岛seo整站优化哪家专业
  • 专门做化妆品的网站地方网站建设
  • 成品网站1688入门网网页设计自学要多久
  • 企业型网站怎么做嘉兴网站建设
  • 在线制作电子公章生成器网站排名优化怎么做
  • wordpress user密码技术优化seo
  • 把自己做的网页发布到网站购物链接
  • 同字形结构布局网站网络优化软件
  • 免费建设门户网站小程序开发制作
  • 成都市网站建设公司长春百度网站优化
  • 尼高品牌设计公司企业网站优化方案
  • 让你有做黑客感觉的网站自动引流推广app
  • 网站的内部优化网站优化员seo招聘
  • wordpress卡密网站源码百度网页pc版登录
  • 中国建设银行官方网站诚聘英才百度业务员联系电话
  • 优化好的网站做企业网站湖南省人民政府
  • 放置在网站根目录下武汉网站推广优化