当前位置: 首页 > news >正文

网站制作培训如何用手机创建网站

网站制作培训,如何用手机创建网站,烟台网站主关键词,wordpress创建页面路由AMP 混合精度训练中的动态缩放机制 在深度学习中,混合精度训练(AMP, Automatic Mixed Precision)是一种常用的技术,它利用半精度浮点(FP16)计算来加速训练,同时使用单精度浮点(FP32…

AMP 混合精度训练中的动态缩放机制

在深度学习中,混合精度训练(AMP, Automatic Mixed Precision)是一种常用的技术,它利用半精度浮点(FP16)计算来加速训练,同时使用单精度浮点(FP32)来保持数值稳定性。为了在混合精度训练中避免数值溢出,PyTorch 提供了一种动态缩放机制来调整 “loss scale”(损失缩放值)。本文将详细解析动态缩放机制的实现原理,并通过代码展示其内部逻辑。


动态缩放机制简介

动态缩放机制的核心思想是通过一个可动态调整的缩放因子(scale factor)放大 FP16 的梯度,从而降低舍入误差对训练的影响。当检测到数值不稳定(例如 NaN 或无穷大)时,缩放因子会被降低;当连续多步未检测到数值问题时,缩放因子会被提高。其调整策略基于以下两个参数:

  • growth_factor: 连续成功步骤后用于增加缩放因子的乘数(通常大于 1,如 2.0)。
  • backoff_factor: 检测到数值溢出时用于减少缩放因子的乘数(通常小于 1,如 0.5)。

此外,动态缩放还使用 growth_interval 参数控制连续成功步骤的计数阈值。当达到这个阈值时,缩放因子才会增加。


AMP 缩放更新核心代码解析

PyTorch 实现了一个用于更新缩放因子的 CUDA 核函数以及相关的 Python 包装函数。以下是核心代码解析:

CUDA 核函数实现

// amp_update_scale_cuda_kernel 核函数实现
__global__ void amp_update_scale_cuda_kernel(float* current_scale,int* growth_tracker,const float* found_inf,double growth_factor,double backoff_factor,int growth_interval) {if (*found_inf) {// 如果发现梯度中存在 NaN 或 Inf,缩放因子乘以 backoff_factor,并重置 growth_tracker。*current_scale = (*current_scale) * backoff_factor;*growth_tracker = 0;} else {// 未发现数值问题,增加 growth_tracker 的计数。auto successful = (*growth_tracker) + 1;if (successful == growth_interval) {// 当 growth_tracker 达到 growth_interval,尝试增长缩放因子。auto new_scale = static_cast<float>((*current_scale) * growth_factor);if (isfinite_ensure_cuda_math(new_scale)) {*current_scale = new_scale;}*growth_tracker = 0;} else {*growth_tracker = successful;}}
}
核函数逻辑
  1. 发现数值溢出(found_inf > 0):

    • 缩放因子 current_scale 乘以 backoff_factor
    • 重置成功计数器 growth_tracker 为 0。
  2. 未发现数值溢出:

    • 增加成功计数器 growth_tracker
    • 如果 growth_tracker 达到 growth_interval,则将缩放因子乘以 growth_factor
    • 保证缩放因子不会超过 FP32 的数值上限。

C++ 包装函数实现

在 PyTorch 中,这一 CUDA 核函数通过 C++ 包装函数 _amp_update_scale_cuda_ 被调用。以下是实现代码:

Tensor& _amp_update_scale_cuda_(Tensor& current_scale,Tensor& growth_tracker,const Tensor& found_inf,double growth_factor,double backoff_factor,int64_t growth_interval) {TORCH_CHECK(growth_tracker.is_cuda(), "growth_tracker must be a CUDA tensor.");TORCH_CHECK(current_scale.is_cuda(), "current_scale must be a CUDA tensor.");TORCH_CHECK(found_inf.is_cuda(), "found_inf must be a CUDA tensor.");// 核函数调用amp_update_scale_cuda_kernel<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(current_scale.mutable_data_ptr<float>(),growth_tracker.mutable_data_ptr<int>(),found_inf.const_data_ptr<float>(),growth_factor,backoff_factor,growth_interval);C10_CUDA_KERNEL_LAUNCH_CHECK();return current_scale;
}

Python 调用入口

AMP 的 GradScaler 类通过 _amp_update_scale_ 函数更新缩放因子,以下是相关代码:
代码来源:anaconda3/envs/xxxx/lib/python3.10/site-packages/torch/amp/grad_scaler.py

具体调用过程可以参考笔者的另一篇博文:PyTorch到C++再到 CUDA 的调用链(C++ ATen 层) :以torch._amp_update_scale_调用为例

def update(self, new_scale: Optional[Union[float, torch.Tensor]] = None) -> None:"""更新缩放因子"""if not self._enabled:return_scale, _growth_tracker = self._check_scale_growth_tracker("update")if new_scale is not None:# 设置用户定义的新缩放因子。self._scale.fill_(new_scale)else:# 收集所有优化器中的 found_inf 数据。found_infs = [found_inf.to(device=_scale.device, non_blocking=True)for state in self._per_optimizer_states.values()for found_inf in state["found_inf_per_device"].values()]found_inf_combined = found_infs[0]if len(found_infs) > 1:for i in range(1, len(found_infs)):found_inf_combined += found_infs[i]# 更新缩放因子。torch._amp_update_scale_(_scale,_growth_tracker,found_inf_combined,self._growth_factor,self._backoff_factor,self._growth_interval,)

总结

PyTorch 的动态缩放机制通过 CUDA 核函数和 Python 包装函数协作完成。其核心逻辑是:

  1. 检测数值不稳定(如 NaN 或 Inf),通过缩小缩放因子提高数值稳定性。
  2. 当连续多次未出现数值不稳定时,逐步增大缩放因子以充分利用 FP16 的动态范围。
  3. 所有更新操作都在 GPU 上异步完成,最大限度地减少同步开销。

通过动态调整缩放因子,AMP 有效地加速了深度学习模型的训练,同时避免了梯度溢出等数值问题。


推荐阅读

  • PyTorch 官方文档
  • 混合精度训练介绍

后记

2025年1月2日15点38分于上海,在GPT4o大模型辅助下完成。

http://www.dinnco.com/news/61844.html

相关文章:

  • 网站推广 济南代写新闻稿
  • 网站开发 外包公司免费的个人网站怎么做
  • 石家庄做网站公司有哪些搜索推广渠道
  • 网页游戏网站链接太原seo公司
  • 做内衣批发的网站绍兴网站快速排名优化
  • 站长工具推荐手游免费0加盟代理
  • 网站运营管理员具体做什么网站快速被百度收录
  • 招聘网站开发程序员企业推广方式
  • 网店营销策划方案范文百度seo搜索引擎优化培训
  • 乐清 做网站 多少钱软件外包网
  • 专业的高密做网站的百度推广竞价技巧
  • 好学校平台网站模板网络营销做得好的品牌
  • 介绍化工项目建设和招聘的网站湖南网站建设效果
  • 网站建设方法:一元手游平台app
  • c web网站开发浏览器seo求职
  • 河北项目网西安网站seo技术
  • 网站开通微信支付接口开发网络推广怎么做效果好
  • 重庆市做网站的公司有哪些免费自己制作网站
  • 网页制作工具的选择与网站整体风格竞价排名适合百度这样的网络平台吗
  • 营销型网站推广方式的论文西安网站seo服务
  • 软件开发培训学校软件开发培训机构搜索引擎优化的内容包括
  • wordpress私人建站主题体育热点新闻
  • 律师个人网站模板培训机构连锁加盟
  • 潍坊地区网站制作有没有可以代理推广的平台
  • 政府部门网站建设依据外包公司什么意思
  • 设计作品展示网站nba球队排名
  • 网店美工岗位要求银川seo优化
  • 免费下载ps素材网站百度手机助手下载2021新版
  • 企业网站首页flash怎么注册网站平台
  • 如何找到靠谱的电商网站建设公司百度竞价系统