当前位置: 首页 > news >正文

做外贸哪个英文网站好优秀品牌策划方案

做外贸哪个英文网站好,优秀品牌策划方案,wordpress no.7高级版,免费网站优化排名一、题目 给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。 示例 1: 输入:nums [-2,1,-3,4,-1,2,1,-5,4] 输出&#…

在这里插入图片描述

一、题目

给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组[4,-1,2,1]的和最大,为6

示例 2:
输入:nums = [1]
输出:1

示例 3:
输入:nums = [5,4,-1,7,8]
输出:23

1 <= nums.length <= 105
-104 <= nums[i] <= 104

进阶: 如果你已经实现复杂度为O(n)的解法,尝试使用更为精妙的 分治法 求解。

二、代码

【1】动态规划: 假设nums数组的长度是n,下标从0n−1。我们用f(i)代表以第i个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:max⁡0≤i≤n−1{f(i)}因此我们只需要求出每个位置的f(i),然后返回f数组中的最大值即可。那么我们如何求f(i)呢?我们可以考虑nums[i]单独成为一段还是加入f(i−1)对应的那一段,这取决于nums[i]f(i−1)+nums[i]的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程:f(i)=max⁡{f(i−1)+nums[i],nums[i]}不难给出一个时间复杂度O(n)、空间复杂度O(n)的实现,即用一个f数组来保存f(i)的值,用一个循环求出所有f(i)。考虑到f(i)只和f(i−1)相关,于是我们可以只用一个变量pre来维护对于当前f(i)f(i−1)的值是多少,从而让空间复杂度降低到O(1),这有点类似「滚动数组」的思想。

class Solution {public int maxSubArray(int[] nums) {int pre = 0, maxAns = nums[0];for (int x : nums) {pre = Math.max(pre + x, x);maxAns = Math.max(maxAns, pre);}return maxAns;}
}

时间复杂度: O(n),其中nnums数组的长度。我们只需要遍历一遍数组即可求得答案。
空间复杂度: O(1)。我们只需要常数空间存放若干变量。

【2】分治: 这个分治方法类似于「线段树求解最长公共上升子序列问题」的pushUp操作。 也许读者还没有接触过线段树,没有关系,方法二的内容假设你没有任何线段树的基础。当然,如果读者有兴趣的话,推荐阅读线段树区间合并法解决多次询问的「区间最长连续上升序列问题」和「区间最大子段和问题」,还是非常有趣的。

我们定义一个操作get(a, l, r)表示查询a序列[l,r]区间内的最大子段和,那么最终我们要求的答案就是get(nums, 0, nums.size() - 1)。如何分治实现这个操作呢?对于一个区间[l,r],我们取m=⌊l+r2⌋,对区间[l,m][m+1,r]分治求解。当递归逐层深入直到区间长度缩小为1的时候,递归「开始回升」。这个时候我们考虑如何通过[l,m]区间的信息和[m+1,r]区间的信息合并成区间[l,r]的信息。最关键的两个问题是:
1、我们要维护区间的哪些信息呢?
2、我们如何合并这些信息呢?

对于一个区间[l,r],我们可以维护四个量:
1、lSum表示[l,r]内以l为左端点的最大子段和
2、rSum表示[l,r]内以r为右端点的最大子段和
3、mSum表示[l,r]内的最大子段和
4、iSum表示[l,r]的区间和

以下简称[l,m][l,r]的「左子区间」,[m+1,r][l,r]的「右子区间」。我们考虑如何维护这些量呢(如何通过左右子区间的信息合并得到[l,r]的信息)?对于长度为1的区间[i,i],四个量的值都和nums[i]相等。对于长度大于1的区间:
1、首先最好维护的是iSum,区间[l,r]iSum就等于「左子区间」的iSum加上「右子区间」的iSum
2、对于[l,r]lSum,存在两种可能,它要么等于「左子区间」的lSum,要么等于「左子区间」的iSum加上「右子区间」的lSum,二者取大。
3、对于[l,r]rSum,同理,它要么等于「右子区间」的rSum,要么等于「右子区间」的iSum加上「左子区间」的rSum,二者取大。
4、当计算好上面的三个量之后,就很好计算[l,r]mSum了。我们可以考虑[l,r]mSum对应的区间是否跨越m——它可能不跨越m,也就是说[l,r]mSum可能是「左子区间」的mSum和 「右子区间」的mSum中的一个;它也可能跨越m,可能是「左子区间」的rSum和 「右子区间」的lSum求和。三者取大。

这样问题就得到了解决。

class Solution {public class Status {public int lSum, rSum, mSum, iSum;public Status(int lSum, int rSum, int mSum, int iSum) {this.lSum = lSum;this.rSum = rSum;this.mSum = mSum;this.iSum = iSum;}}public int maxSubArray(int[] nums) {return getInfo(nums, 0, nums.length - 1).mSum;}public Status getInfo(int[] a, int l, int r) {if (l == r) {return new Status(a[l], a[l], a[l], a[l]);}int m = (l + r) >> 1;Status lSub = getInfo(a, l, m);Status rSub = getInfo(a, m + 1, r);return pushUp(lSub, rSub);}public Status pushUp(Status l, Status r) {int iSum = l.iSum + r.iSum;int lSum = Math.max(l.lSum, l.iSum + r.lSum);int rSum = Math.max(r.rSum, r.iSum + l.rSum);int mSum = Math.max(Math.max(l.mSum, r.mSum), l.rSum + r.lSum);return new Status(lSum, rSum, mSum, iSum);}
}

假设序列a的长度为n
时间复杂度: 假设我们把递归的过程看作是一颗二叉树的先序遍历,那么这颗二叉树的深度的渐进上界为O(log⁡n),这里的总时间相当于遍历这颗二叉树的所有节点,故总时间的渐进上界是O(∑i=1log⁡n2i−1)=O(n),故渐进时间复杂度为O(n)
空间复杂度: 递归会使用O(log⁡n)的栈空间,故渐进空间复杂度为O(log⁡n)

题外话: 「方法二」相较于「方法一」来说,时间复杂度相同,但是因为使用了递归,并且维护了四个信息的结构体,运行的时间略长,空间复杂度也不如方法一优秀,而且难以理解。那么这种方法存在的意义是什么呢?

对于这道题而言,确实是如此的。但是仔细观察「方法二」,它不仅可以解决区间[0,n−1],还可以用于解决任意的子区间[l,r]的问题。如果我们把[0,n−1]分治下去出现的所有子区间的信息都用堆式存储的方式记忆化下来,即建成一棵真正的树之后,我们就可以在O(log⁡n)的时间内求到任意区间内的答案,我们甚至可以修改序列中的值,做一些简单的维护,之后仍然可以在O(log⁡n)的时间内求到任意区间内的答案,对于大规模查询的情况下,这种方法的优势便体现了出来。这棵树就是上文提及的一种神奇的数据结构——线段树。

http://www.dinnco.com/news/62802.html

相关文章:

  • 网站规划与开发专业海外营销推广
  • 沈阳公司网站建设seo优化技术厂家
  • 阿里云网站建设步骤西安seo搜推宝
  • 顺德做网站那家好seo查询站长工具
  • 青岛正规网站建设哪家便宜创建免费网站
  • 深圳哪家做网站好全球十大搜索引擎
  • 温州网站建设备案今日冯站长之家
  • 网站丢失了怎么办啊网络推广策划方案
  • 重庆h5建站域名查询网
  • 北京网站建设公司现状重庆百度推广seo
  • 菏砖网站建设无锡百度竞价公司
  • 98建筑网站如何进行新产品的推广
  • 深圳医疗网站建设报价深圳互联网营销
  • 南昌网站设计有限公司最好用的搜索引擎
  • 可以做公众号的网站百度指数官网查询入口
  • 网站的三种基本类型小红书信息流广告
  • 餐饮公司做网站的好处合肥百度关键词排名
  • 山西搜索引擎优化什么是seo标题优化
  • ps素材免费下载素材库长沙seo网络营销推广
  • 怎么做转载小说网站关键词优化seo外包
  • wordpress评论框必填加星百度视频排名优化
  • 黑色背景的网站开发工具山东百度推广总代理
  • 专门代做毕设的网站大连百度关键词优化
  • 做像素画的网站公司做网站怎么做
  • 上海免费网站建设咨询新闻最近的新闻
  • 2b2网站开发中国免费网站服务器主机域名
  • asp系统网站怎么做优化营销技巧第三季
  • 目前b2b网站有哪些做seo的公司
  • 青海做网站最好的网站推广软件
  • 哪个网站可以做会计试题常州网站建设