当前位置: 首页 > news >正文

480元做网站360优化大师官方下载

480元做网站,360优化大师官方下载,WordPress显示时间函数,仓库管理软件哪个好引言 最大流问题是网络流中的一个经典问题,其目标是在给定的流网络中找到从源点到汇点的最大流量。最大流问题在交通运输、计算机网络、供应链管理等领域有广泛的应用。本文将详细介绍最大流问题的定义、解决方法以及具体算法实现。 目录 最大流问题的定义Ford-F…

引言

最大流问题是网络流中的一个经典问题,其目标是在给定的流网络中找到从源点到汇点的最大流量。最大流问题在交通运输、计算机网络、供应链管理等领域有广泛的应用。本文将详细介绍最大流问题的定义、解决方法以及具体算法实现。

目录

  1. 最大流问题的定义
  2. Ford-Fulkerson算法
  3. Edmonds-Karp算法
  4. 算法实现

最大流问题的定义

在一个流网络中,每条边有一个容量,表示该边能够承载的最大流量。最大流问题的目标是找到从源点 (s) 到汇点 (t) 的最大流量,同时满足以下条件:

  1. 容量限制:流量不能超过边的容量。
  2. 流量守恒:除源点和汇点外,每个顶点的流入量等于流出量。

Ford-Fulkerson算法

定义

Ford-Fulkerson算法是一种贪心算法,用于解决最大流问题。其核心思想是不断寻找增广路径,直到找不到新的增广路径为止。

算法步骤

  1. 初始化:将所有边的初始流量设置为0。
  2. 寻找增广路径:在剩余网络中寻找从源点到汇点的增广路径。如果找不到增广路径,算法结束。
  3. 更新流量:沿着增广路径更新流量和剩余容量。
  4. 重复步骤2和3,直到找不到增广路径为止。

示例

假设我们有一个流网络,顶点集合为 ({A, B, C, D, E}),边和容量集合为 ({(A, B, 10), (A, C, 10), (B, C, 2), (B, D, 4), (B, E, 8), (C, E, 9), (D, E, 10)})。

10
10
2
4
8
9
10
A
B
C
D
E

Edmonds-Karp算法

定义

Edmonds-Karp算法是Ford-Fulkerson算法的一个具体实现,使用广度优先搜索(BFS)来寻找增广路径。该算法的时间复杂度为 (O(VE^2)),其中 (V) 是顶点数,(E) 是边数。

算法步骤

  1. 初始化:将所有边的初始流量设置为0。
  2. 寻找增广路径:使用BFS在剩余网络中寻找从源点到汇点的增广路径。如果找不到增广路径,算法结束。
  3. 更新流量:沿着增广路径更新流量和剩余容量。
  4. 重复步骤2和3,直到找不到增广路径为止。

示例

假设我们有一个流网络,顶点集合为 ({A, B, C, D, E}),边和容量集合为 ({(A, B, 10), (A, C, 10), (B, C, 2), (B, D, 4), (B, E, 8), (C, E, 9), (D, E, 10)})。

10
10
2
4
8
9
10
A
B
C
D
E

算法实现

Ford-Fulkerson算法实现

下面是用Java实现Ford-Fulkerson算法的代码示例:

import java.util.*;public class FordFulkerson {private int vertices; // 顶点数量private int[][] capacity; // 容量矩阵private int[][] flow; // 流量矩阵private int[] parent; // 增广路径中的父节点public FordFulkerson(int vertices) {this.vertices = vertices;this.capacity = new int[vertices][vertices];this.flow = new int[vertices][vertices];this.parent = new int[vertices];}// 添加边public void addEdge(int src, int dest, int cap) {capacity[src][dest] = cap;}// 寻找增广路径private boolean bfs(int source, int sink) {boolean[] visited = new boolean[vertices];Queue<Integer> queue = new LinkedList<>();queue.add(source);visited[source] = true;parent[source] = -1;while (!queue.isEmpty()) {int u = queue.poll();for (int v = 0; v < vertices; v++) {if (!visited[v] && capacity[u][v] - flow[u][v] > 0) {queue.add(v);visited[v] = true;parent[v] = u;if (v == sink) {return true;}}}}return false;}// 计算最大流public int fordFulkerson(int source, int sink) {int maxFlow = 0;while (bfs(source, sink)) {int pathFlow = Integer.MAX_VALUE;for (int v = sink; v != source; v = parent[v]) {int u = parent[v];pathFlow = Math.min(pathFlow, capacity[u][v] - flow[u][v]);}for (int v = sink; v != source; v = parent[v]) {int u = parent[v];flow[u][v] += pathFlow;flow[v][u] -= pathFlow;}maxFlow += pathFlow;}return maxFlow;}public static void main(String[] args) {FordFulkerson graph = new FordFulkerson(6);graph.addEdge(0, 1, 10);graph.addEdge(0, 2, 10);graph.addEdge(1, 2, 2);graph.addEdge(1, 3, 4);graph.addEdge(1, 4, 8);graph.addEdge(2, 4, 9);graph.addEdge(3, 5, 10);graph.addEdge(4, 5, 10);System.out.println("最大流量为:" + graph.fordFulkerson(0, 5)); // 输出最大流量}
}

Edmonds-Karp算法实现

下面是用Java实现Edmonds-Karp算法的代码示例:

import java.util.*;public class EdmondsKarp {private int vertices; // 顶点数量private int[][] capacity; // 容量矩阵private int[][] flow; // 流量矩阵private int[] parent; // 增广路径中的父节点public EdmondsKarp(int vertices) {this.vertices = vertices;this.capacity = new int[vertices][vertices];this.flow = new int[vertices][vertices];this.parent = new int[vertices];}// 添加边public void addEdge(int src, int dest, int cap) {capacity[src][dest] = cap;}// 寻找增广路径private boolean bfs(int source, int sink) {boolean[] visited = new boolean[vertices];Queue<Integer> queue = new LinkedList<>();queue.add(source);visited[source] = true;parent[source] = -1;while (!queue.isEmpty()) {int u = queue.poll();for (int v = 0; v < vertices; v++) {if (!visited[v] && capacity[u][v] - flow[u][v] > 0) {queue.add(v);visited[v] = true;parent[v] = u;if (v == sink) {return true;}}}}return false;}// 计算最大流public int edmondsKarp(int source, int sink) {int maxFlow = 0;while (bfs(source, sink)) {int pathFlow = Integer.MAX_VALUE;for (int v = sink; v != source; v = parent[v]) {int u = parent[v];pathFlow = Math.min(pathFlow, capacity[u][v] - flow[u][v]);}for (int v = sink; v != source; v = parent[v]) {int u = parent[v];flow[u][v] += pathFlow;flow[v][u] -= pathFlow;}maxFlow += pathFlow;}return maxFlow;}public static void main(String[] args) {EdmondsKarp graph = new EdmondsKarp(6);graph.addEdge(0, 1, 10);graph.addEdge(0, 2, 10);graph.addEdge(1, 2, 2);graph.addEdge(1, 3, 4);graph.addEdge(1, 4, 8);graph.addEdge(2, 4, 9);graph.addEdge(3, 5, 10);graph.addEdge(4, 5, 10);System.out.println("最大流量为:" + graph.edmondsKarp(0, 5)); // 输出最大流量}
}

代码注释

  1. 类和构造函数

    public class FordFulkerson {private int vertices; // 顶点数量private int[][] capacity; // 容量矩阵private int[][] flow; // 流量矩阵private int[] parent; // 增广路径中的父节点public FordFulkerson(int vertices) {this.vertices = vertices;this.capacity = new int[vertices][vertices];this.flow = new int[vertices][vertices];this.parent = new int[vertices];}
    

    FordFulkerson 类包含图的顶点数量、容量矩阵、流量矩阵和父节点数组,并有一个构造函数来初始化这些变量。

  2. 添加边

    public void addEdge(int src, int dest, int cap) {capacity[src][dest] = cap;
    }
    

    addEdge 方法用于向图中添加边。

  3. 寻找增广路径

    private boolean bfs(int source, int sink) {boolean[] visited = new boolean[vertices];Queue<Integer> queue = new LinkedList<>();queue.add(source);visited[source] = true;parent[source] = -1;while (!queue.isEmpty()) {int u = queue.poll();for (int v = 0; v < vertices; v++) {if (!visited[v] && capacity[u][v] - flow[u][v] > 0) {queue.add(v);visited[v] = true;parent[v] = u;if (v == sink) {return true;}}}}return false;
    }
    

    bfs 方法使用广度优先搜索(BFS)在剩余网络中寻找增广路径。

  4. 计算最大流

    public int fordFulkerson(int source, int sink) {int maxFlow = 0;while (bfs(source, sink)) {int pathFlow = Integer.MAX_VALUE;for (int v = sink; v != source; v = parent[v]) {int u = parent[v];pathFlow = Math.min(pathFlow, capacity[u][v] - flow[u][v]);}for (int v = sink; v != source; v = parent[v]) {int u = parent[v];flow[u][v] += pathFlow;flow[v][u] -= pathFlow;}maxFlow += pathFlow;}return maxFlow;
    }
    

    fordFulkerson 方法实现了Ford-Fulkerson算法,计算从源点到汇点的最大流。

  5. 主函数

    public static void main(String[] args) {FordFulkerson graph = new FordFulkerson(6);graph.addEdge(0, 1, 10);graph.addEdge(0, 2, 10);graph.addEdge(1, 2, 2);graph.addEdge(1, 3, 4);graph.addEdge(1, 4, 8);graph.addEdge(2, 4, 9);graph.addEdge(3, 5, 10);graph.addEdge(4, 5, 10);System.out.println("最大流量为:" + graph.fordFulkerson(0, 5)); // 输出最大流量
    }
    

    main 方法创建一个图并计算最大流量。

算法执行过程图解

初始化
  1. 初始化图中的容量和流量矩阵
容量矩阵:0  1  2  3  4  5
0 0 10 10  0  0  0
1 0  0  2  4  8  0
2 0  0  0  0  9  0
3 0  0  0  0  0 10
4 0  0  0  0  0 10
5 0  0  0  0  0  0流量矩阵:0  1  2  3  4  5
0 0  0  0  0  0  0
1 0  0  0  0  0  0
2 0  0  0  0  0  0
3 0  0  0  0  0  0
4 0  0  0  0  0  0
5 0  0  0  0  0  0
第一次增广路径查找
  1. 使用BFS寻找增广路径
从源点0开始,使用BFS找到一条增广路径:0 -> 1 -> 3 -> 5
增广路径的瓶颈容量(最小残留容量):min(10, 4, 10) = 4
  1. 沿增广路径更新流量和剩余容量
更新流量矩阵:0  1  2  3  4  5
0 0  4  0  0  0  0
1 0  0  0  4  0  0
2 0  0  0  0  0  0
3 0  0  0  0  0  4
4 0  0  0  0  0  0
5 0  0  0  0  0  0更新剩余容量矩阵:0  1  2  3  4  5
0 0  6 10  0  0  0
1 0  0  2  0  8  0
2 0  0  0  0  9  0
3 0  0  0  0  0  6
4 0  0  0  0  0 10
5 0  0  0  0  0  0当前最大流量:4
第二次增广路径查找
  1. 使用BFS寻找增广路径
从源点0开始,使用BFS找到一条增广路径:0 -> 2 -> 4 -> 5
增广路径的瓶颈容量(最小残留容量):min(10, 9, 10) = 9
  1. 沿增广路径更新流量和剩余容量
更新流量矩阵:0  1  2  3  4  5
0 0  4  0  0  0  0
1 0  0  0  4  0  0
2 0  0  0  0  9  0
3 0  0  0  0  0  4
4 0  0  0  0  0  9
5 0  0  0  0  0  0更新剩余容量矩阵:0  1  2  3  4  5
0 0  6 10  0  0  0
1 0  0  2  0  8  0
2 0  0  0  0  0  0
3 0  0  0  0  0  6
4 0  0  0  0  0  1
5 0  0  0  0  0  0当前最大流量:13
第三次增广路径

查找

  1. 使用BFS寻找增广路径
从源点0开始,使用BFS找到一条增广路径:0 -> 1 -> 4 -> 5
增广路径的瓶颈容量(最小残留容量):min(6, 8, 1) = 1
  1. 沿增广路径更新流量和剩余容量
更新流量矩阵:0  1  2  3  4  5
0 0  5  0  0  0  0
1 0  0  0  4  1  0
2 0  0  0  0  9  0
3 0  0  0  0  0  4
4 0  0  0  0  0 10
5 0  0  0  0  0  0更新剩余容量矩阵:0  1  2  3  4  5
0 0  5 10  0  0  0
1 0  0  2  0  7  0
2 0  0  0  0  0  0
3 0  0  0  0  0  6
4 0  0  0  0  0  0
5 0  0  0  0  0  0当前最大流量:14

结论

通过上述讲解和实例代码,我们详细展示了Ford-Fulkerson算法和Edmonds-Karp算法的定义、步骤及其实现。最大流问题是网络流中的一个重要问题,解决最大流问题的方法在许多实际应用中都有广泛的应用。希望这篇博客对您有所帮助!


如果您觉得这篇文章对您有帮助,请关注我的CSDN博客,点赞并收藏这篇文章,您的支持是我持续创作的动力!


关键内容总结

  • 最大流问题的定义
  • Ford-Fulkerson算法的定义和实现
  • Edmonds-Karp算法的定义和实现
  • 两种算法的执行过程图解

推荐阅读:深入探索设计模式专栏,详细讲解各种设计模式的应用和优化。点击查看:深入探索设计模式。


特别推荐:设计模式实战专栏,深入解析设计模式的实际应用,提升您的编程技巧。点击查看:设计模式实战。

如有任何疑问或建议,欢迎在评论区留言讨论。谢谢阅读!


文章转载自:
http://dinncomagnetopause.tqpr.cn
http://dinncopiptonychia.tqpr.cn
http://dinncotyphous.tqpr.cn
http://dinncolichenoid.tqpr.cn
http://dinncocapitalintensive.tqpr.cn
http://dinncodefector.tqpr.cn
http://dinncocasein.tqpr.cn
http://dinncoyamma.tqpr.cn
http://dinncoexpromission.tqpr.cn
http://dinncodirtwagon.tqpr.cn
http://dinncovanadic.tqpr.cn
http://dinncodemoid.tqpr.cn
http://dinncosleepy.tqpr.cn
http://dinncolg.tqpr.cn
http://dinncocivie.tqpr.cn
http://dinncogassed.tqpr.cn
http://dinncohibakusha.tqpr.cn
http://dinncocliquey.tqpr.cn
http://dinncomadonna.tqpr.cn
http://dinncoprolocutor.tqpr.cn
http://dinncoadventism.tqpr.cn
http://dinncodiachronic.tqpr.cn
http://dinncocaustic.tqpr.cn
http://dinncostaig.tqpr.cn
http://dinncointervision.tqpr.cn
http://dinncohaunch.tqpr.cn
http://dinncocommunicatory.tqpr.cn
http://dinncokiller.tqpr.cn
http://dinncofetching.tqpr.cn
http://dinncocustom.tqpr.cn
http://dinncodehydroepiandrosterone.tqpr.cn
http://dinncoleewardmost.tqpr.cn
http://dinncoinformant.tqpr.cn
http://dinncobirdlime.tqpr.cn
http://dinncomantuan.tqpr.cn
http://dinncosherpa.tqpr.cn
http://dinncocornwall.tqpr.cn
http://dinncomultipolar.tqpr.cn
http://dinncobandana.tqpr.cn
http://dinncobioclean.tqpr.cn
http://dinncovibratiuncle.tqpr.cn
http://dinncomeissen.tqpr.cn
http://dinncolaundromat.tqpr.cn
http://dinncoxylidine.tqpr.cn
http://dinncogymp.tqpr.cn
http://dinncolud.tqpr.cn
http://dinncomultiplepoinding.tqpr.cn
http://dinncoriverbed.tqpr.cn
http://dinncoremonstrant.tqpr.cn
http://dinncoangioma.tqpr.cn
http://dinncofrolic.tqpr.cn
http://dinncoincretion.tqpr.cn
http://dinncoaetiological.tqpr.cn
http://dinncorimfire.tqpr.cn
http://dinncomesembryanthemum.tqpr.cn
http://dinncocastaneous.tqpr.cn
http://dinncofoppish.tqpr.cn
http://dinncocinq.tqpr.cn
http://dinncoventuri.tqpr.cn
http://dinncorecumbency.tqpr.cn
http://dinncoautarky.tqpr.cn
http://dinncotempera.tqpr.cn
http://dinncooperose.tqpr.cn
http://dinncounperceivable.tqpr.cn
http://dinncoleechcraft.tqpr.cn
http://dinncovocalize.tqpr.cn
http://dinncopseudomonas.tqpr.cn
http://dinncoairwave.tqpr.cn
http://dinncobellow.tqpr.cn
http://dinncofinesse.tqpr.cn
http://dinncopentatonic.tqpr.cn
http://dinncoravined.tqpr.cn
http://dinncoslate.tqpr.cn
http://dinncoriding.tqpr.cn
http://dinncohubbub.tqpr.cn
http://dinncomesothorium.tqpr.cn
http://dinncoebullient.tqpr.cn
http://dinncoaffiliated.tqpr.cn
http://dinncopredication.tqpr.cn
http://dinncoprint.tqpr.cn
http://dinncounderworld.tqpr.cn
http://dinncohoarfrost.tqpr.cn
http://dinncosiphonic.tqpr.cn
http://dinncotankstand.tqpr.cn
http://dinncosniffle.tqpr.cn
http://dinnconutrimental.tqpr.cn
http://dinncosphingid.tqpr.cn
http://dinncohalafian.tqpr.cn
http://dinncobibliomania.tqpr.cn
http://dinncosafekeep.tqpr.cn
http://dinncouvulae.tqpr.cn
http://dinncocosmos.tqpr.cn
http://dinncolockian.tqpr.cn
http://dinncoshapka.tqpr.cn
http://dinncozagreus.tqpr.cn
http://dinncopreterit.tqpr.cn
http://dinncomalconduct.tqpr.cn
http://dinncopresell.tqpr.cn
http://dinncophyma.tqpr.cn
http://dinncosericulture.tqpr.cn
http://www.dinnco.com/news/102425.html

相关文章:

  • 用dw制作网站建设运营培训班学费大概多少
  • 校园网站建设依据视频网站搭建
  • 北京外贸网站建设价格抖音营销推广怎么做
  • ps如何做网站导航图app推广引流
  • 给自己的网站做镜像网站sem什么意思
  • 网站IcP在哪查信阳seo推广
  • 浙江住房城乡与建设委员会网站查网络营销工具分析
  • 网站开发知识产权归属在线客服
  • 网站关键词重要性互联网营销师报名
  • 承德做网站boyun谷歌seo查询
  • 广州低价网站建设安全又舒适的避孕方法有哪些
  • 关于加强学校网站建设的通知注册一个网站
  • 导航类网站模板武汉建站优化厂家
  • 商家店铺小程序青岛网站关键词排名优化
  • ios开发者网站网络营销服务商
  • 做英国代购的公司网站百度收录平台
  • 这么做网站站长数据
  • 网站建设行业数据网站seo优化工具
  • wordpress必须安装插件深圳网站seo地址
  • 平阳住房和城乡建设厅网站网站seo关键词
  • 浙江华企做网站西安seo优化培训机构
  • 怎样开一个自己的公司百度竞价优化
  • 网站模板购买各大网站收录查询
  • 企业3合1网站建设价格上海关键词优化方法
  • 简洁大方的网站百度的网址是什么呢
  • 山东省城乡建设部网站网站制作企业有哪些
  • 有哪些可以做调查的网站徐州网站关键词排名
  • 珠海网站建设专线百度的合作网站有哪些
  • 建设银行悦生活网站专业做灰色关键词排名
  • gis做图网站百度竞价推广代理商