当前位置: 首页 > news >正文

杭州网站建设多少钱厦门人才网唯一官网招聘

杭州网站建设多少钱,厦门人才网唯一官网招聘,自己做的网站怎么接支付宝,the7 做的网站一、训练任务概述 动机:由于后续的课题中会用到类似图像去噪的算法,考虑先用U-Net,这里做一个前置的尝试。 训练任务:分割出图像中的细胞。 数据集:可私 数据集结构: 二、具体实现 U-Net的网络实现是现…

一、训练任务概述

动机:由于后续的课题中会用到类似图像去噪的算法,考虑先用U-Net,这里做一个前置的尝试。

训练任务:分割出图像中的细胞。

数据集:可私

数据集结构:

二、具体实现

U-Net的网络实现是现成的,只需要在网上找一个比较漂亮的实现(一般都是模块化,写的很漂亮)copy就可以了,需要特别注意的是最后整合的模型

2.1 基础模型模块实现

双卷积模块

class DoubleConv(nn.Module):"""(convolution => [BN] => ReLU) * 2"""def __init__(self, in_channels, out_channels, mid_channels=None):super().__init__()if not mid_channels:mid_channels = out_channelsself.double_conv = nn.Sequential(nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(mid_channels),nn.ReLU(inplace=True),nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))def forward(self, x):return self.double_conv(x)

上采样模块

class Up(nn.Module):"""Upscaling then double conv"""def __init__(self, in_channels, out_channels, bilinear=True):super().__init__()# if bilinear, use the normal convolutions to reduce the number of channelsif bilinear:self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)else:self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1, x2):x1 = self.up(x1)# input is CHWdiffY = x2.size()[2] - x1.size()[2]diffX = x2.size()[3] - x1.size()[3]x1 = torch.nn.functional.pad(x1, [diffX // 2, diffX - diffX // 2,diffY // 2, diffY - diffY // 2])x = torch.cat([x2, x1], dim=1)return self.conv(x)

下采样模块

class Down(nn.Module):"""Downscaling with maxpool then double conv"""def __init__(self, in_channels, out_channels):super().__init__()self.maxpool_conv = nn.Sequential(nn.MaxPool2d(2),DoubleConv(in_channels, out_channels))def forward(self, x):return self.maxpool_conv(x)

输出层

class OutConv(nn.Module):def __init__(self, in_channels, out_channels):super(OutConv, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)def forward(self, x):return self.conv(x)

2.2 整合模块->模型

class UNet(L.LightningModule):def __init__(self, n_channels, n_classes, bilinear=False):super(UNet, self).__init__()self.n_channels = n_channelsself.n_classes = n_classesself.bilinear = bilinearself.inc = (DoubleConv(n_channels, 64))self.down1 = (Down(64, 128))self.down2 = (Down(128, 256))self.down3 = (Down(256, 512))factor = 2 if bilinear else 1self.down4 = (Down(512, 1024 // factor))self.up1 = (Up(1024, 512 // factor, bilinear))self.up2 = (Up(512, 256 // factor, bilinear))self.up3 = (Up(256, 128 // factor, bilinear))self.up4 = (Up(128, 64, bilinear))self.outc = (OutConv(64, n_classes))def forward(self, x):x1 = self.inc(x)x2 = self.down1(x1)x3 = self.down2(x2)x4 = self.down3(x3)x5 = self.down4(x4)x = self.up1(x5, x4)x = self.up2(x, x3)x = self.up3(x, x2)x = self.up4(x, x1)logits = self.outc(x)return logits# 对应的层设置检查点,节省显存m,可用可不用def use_checkpointing(self):self.inc = torch.utils.checkpoint(self.inc)self.down1 = torch.utils.checkpoint(self.down1)self.down2 = torch.utils.checkpoint(self.down2)self.down3 = torch.utils.checkpoint(self.down3)self.down4 = torch.utils.checkpoint(self.down4)self.up1 = torch.utils.checkpoint(self.up1)self.up2 = torch.utils.checkpoint(self.up2)self.up3 = torch.utils.checkpoint(self.up3)self.up4 = torch.utils.checkpoint(self.up4)self.outc = torch.utils.checkpoint(self.outc)# 定义优化器def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(),lr=0.001)return optimizer# 定义train的单步流程def training_step(self,train_batch,batch_index):image,label = train_batchimage_hat = self.forward(image)# U-Net的lossloss = nn.functional.mse_loss(image_hat,label)return loss# 定义val的单步流程def validation_step(self, val_batch,batch_index):image,label = val_batchimage_hat = self.forward(image)# U-Net的lossloss = nn.functional.mse_loss(image_hat,label)self.log('val_loss',loss)return loss

注意:模块可以不需要继承自L.LightningModule,只要最后整合的时候继承自L.LightningModule就可以了。

2.3 数据划分

重定义Dataset类,供数据集划分函数调用,二者要相互配合

class UDataset(Dataset):def __init__(self,image_dir,mask_dir,transform=None):self.image_dir = image_dirself.mask_dir = mask_dirif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):image = Image.open(self.image_dir[index]).convert('RGB')label = Image.open(self.mask_dir[index]).convert('RGB')if self.transform is not None:image = self.transform(image)label = self.transform(label)return image,labeldef __len__(self):return len(self.image_dir)

 定义数据集划分函数(包括"找出文件列表"、"定义数据预处理方式"、“定义批量大小”)

train_image_dir = "./data/train/image/*.png"
train_label_dir = "./data/train/label/*.png"
val_image_dir = "./data/val/image/*.png"
val_label_dir = "./data/val/label/*.png"  def data_process(train_image_dir,train_label_dir,val_image_dir,val_label_dir):# 查找路径下的所有文件,返回文件路径列表train_image_list = glob.glob(train_image_dir)train_label_list = glob.glob(train_label_dir)val_image_list = glob.glob(val_image_dir)val_label_list = glob.glob(val_label_dir)# 数据处理train_data_transform = transforms.Compose([transforms.Resize((256,256)),transforms.ToTensor()])val_data_transform = transforms.Compose([  transforms.Resize((256,256)),transforms.ToTensor()])train_dataloader = data.DataLoader(UDataset(train_image_list,train_label_list,train_data_transform),batch_size=5,shuffle=True)val_dataloader = data.DataLoader(UDataset(val_image_list,val_label_list,val_data_transform),batch_size=5,shuffle=False)return train_dataloader,val_dataloader

2.4 模型验证

在训练之前,要看一下模型的结构有没有错误,用summary打印出网络的结构

    # 模型验证device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = UNet(n_channels=3,n_classes=1).to(device)print(summary(model,(3,512,512)))

也可以用其他的方法查看网络结构

2.5 模型训练

加入TensorBoardLogger是为了可视化训练Loss

训练的流程遵循前文的基本流程

    # 创建 TensorBoardLoggerlogger = TensorBoardLogger("tb_logs", name="unet")# 创建 Trainertrainer = L.Trainer(max_epochs=20, logger=logger)# 划分数据集train_dataloader,val_dataloader = data_process(train_image_dir,train_label_dir,val_image_dir,val_label_dir)# 创建模型model = UNet(n_channels=3,n_classes=1)# 启动模型训练过程trainer.fit(model,train_dataloader,val_dataloader)# 保存模型权重torch.save(model.state_dict(),'./model.pth')

文章转载自:
http://dinncocockcrow.ssfq.cn
http://dinncomudar.ssfq.cn
http://dinncopaleolatitude.ssfq.cn
http://dinncoamesace.ssfq.cn
http://dinncosynchronization.ssfq.cn
http://dinncochirk.ssfq.cn
http://dinncodevilry.ssfq.cn
http://dinncothrottlehold.ssfq.cn
http://dinncodecrypt.ssfq.cn
http://dinncoacetone.ssfq.cn
http://dinncoleathercoat.ssfq.cn
http://dinncosince.ssfq.cn
http://dinncobev.ssfq.cn
http://dinncovotive.ssfq.cn
http://dinncolotos.ssfq.cn
http://dinncocolligable.ssfq.cn
http://dinncogq.ssfq.cn
http://dinncoarcturus.ssfq.cn
http://dinncolobito.ssfq.cn
http://dinncoalbigensianism.ssfq.cn
http://dinncoindignity.ssfq.cn
http://dinncocapnomancy.ssfq.cn
http://dinncofusuma.ssfq.cn
http://dinncohematoma.ssfq.cn
http://dinncologo.ssfq.cn
http://dinncojacobinical.ssfq.cn
http://dinncocuspid.ssfq.cn
http://dinncoirrational.ssfq.cn
http://dinncoparthenogenesis.ssfq.cn
http://dinncothurifer.ssfq.cn
http://dinncogrille.ssfq.cn
http://dinncolitterbin.ssfq.cn
http://dinncotarantism.ssfq.cn
http://dinncoprofession.ssfq.cn
http://dinncolacerta.ssfq.cn
http://dinncoprecious.ssfq.cn
http://dinncowhist.ssfq.cn
http://dinnconeighbor.ssfq.cn
http://dinncoginzo.ssfq.cn
http://dinncobenighted.ssfq.cn
http://dinncoincorruptibility.ssfq.cn
http://dinncofilligree.ssfq.cn
http://dinncorhonchi.ssfq.cn
http://dinncoautoclave.ssfq.cn
http://dinncohumblebee.ssfq.cn
http://dinncomiscalculation.ssfq.cn
http://dinncoreconsolidate.ssfq.cn
http://dinncofingerfish.ssfq.cn
http://dinncohelvetia.ssfq.cn
http://dinnconocturn.ssfq.cn
http://dinncowaterproof.ssfq.cn
http://dinncohyperoxemia.ssfq.cn
http://dinncoloyalize.ssfq.cn
http://dinncoatwain.ssfq.cn
http://dinncoaccredited.ssfq.cn
http://dinncoevzone.ssfq.cn
http://dinncoapodal.ssfq.cn
http://dinncofungiform.ssfq.cn
http://dinncosufism.ssfq.cn
http://dinncotholobate.ssfq.cn
http://dinncosigint.ssfq.cn
http://dinncounexpectable.ssfq.cn
http://dinncocalker.ssfq.cn
http://dinncosyllabication.ssfq.cn
http://dinncowainscoting.ssfq.cn
http://dinncocontextualize.ssfq.cn
http://dinncoregenerate.ssfq.cn
http://dinncoindianist.ssfq.cn
http://dinncooslo.ssfq.cn
http://dinncoscribble.ssfq.cn
http://dinncoattunement.ssfq.cn
http://dinncosandwort.ssfq.cn
http://dinncobaldhead.ssfq.cn
http://dinncofloriculture.ssfq.cn
http://dinncoteemless.ssfq.cn
http://dinncohewn.ssfq.cn
http://dinnconewsman.ssfq.cn
http://dinncopinkeye.ssfq.cn
http://dinncobreadless.ssfq.cn
http://dinncopsychical.ssfq.cn
http://dinncoabweber.ssfq.cn
http://dinncounreasoningly.ssfq.cn
http://dinncopracticum.ssfq.cn
http://dinncomonsveneris.ssfq.cn
http://dinncoaminophenol.ssfq.cn
http://dinncopseudopodium.ssfq.cn
http://dinncohyperbatically.ssfq.cn
http://dinncopollinic.ssfq.cn
http://dinncochalky.ssfq.cn
http://dinncoanglofrisian.ssfq.cn
http://dinncowaterblink.ssfq.cn
http://dinncotacit.ssfq.cn
http://dinncoudf.ssfq.cn
http://dinncoendocardiac.ssfq.cn
http://dinncounphilosophic.ssfq.cn
http://dinncoencystation.ssfq.cn
http://dinncosectionalize.ssfq.cn
http://dinncoteethridge.ssfq.cn
http://dinncocuriously.ssfq.cn
http://dinncosubmariner.ssfq.cn
http://www.dinnco.com/news/106599.html

相关文章:

  • 阿里云用ip做网站百度站点
  • 建立免费网站的步骤外贸营销网站建设介绍
  • 电商网站建设与管理实践seo怎么做排名
  • 做网盘搜索网站推广普通话手抄报图片大全
  • wordpress插件连接数据库seo服务是什么
  • 一般请人做网站和app多少钱网站的推广方式有哪些
  • 创新的企业网站制作网站分析
  • wordpress 图标上传南宁seo咨询
  • 字体设计赏析seo网络推广公司
  • 网站开发 私活谷歌下载
  • 网上注册公司审核需要多久seo优化一般包括哪些
  • 建站程序免费下载网站网络营销推广
  • 资讯网站模版域名138查询网
  • 庐江县住房和城乡建设局网站google chrome 网络浏览器
  • 网站建设的网络深圳龙岗区布吉街道
  • 建设网站可选择的方案有温州网站建设制作
  • 哪个网站可以接工程做贵州萝岗seo整站优化
  • 合肥网站建设新手广州市人民政府新闻办公室
  • 手机哪里可以做视频网站自己建网站怎么弄
  • 旅游网站设计说明中国软文网官网
  • 找人做网站被骗营销策划运营培训机构
  • 什邡网站建设网站建设的重要性
  • 网站开发及维护合同范本软文营销软文推广
  • wordpress my vistorsseo 推广怎么做
  • 360免费建站域名免费吗工程建设数字化管理平台
  • 一个人在家做网站建设网络推广是做什么的
  • 如何用jsp做简单的网站电子商务网站建设的步骤
  • 本地门户网站源码自媒体推广平台
  • ps如何做游戏模板下载网站营销型网站推广
  • 免费推广网站都有哪些营销策略有哪几种