当前位置: 首页 > news >正文

做微商做什么网站比较好今日热搜新闻头条

做微商做什么网站比较好,今日热搜新闻头条,网站开发的售后 维保,北京app开发网络公司-------------OpenCV教程集合------------- Python教程99:一起来初识OpenCV(一个跨平台的计算机视觉库) OpenCV教程01:图像的操作(读取显示保存属性获取和修改像素值) OpenCV教程02:图像处理…

-------------OpenCV教程集合-------------

Python教程99:一起来初识OpenCV(一个跨平台的计算机视觉库)

OpenCV教程01:图像的操作(读取+显示+保存+属性+获取和修改像素值)

OpenCV教程02:图像处理系统1.0(翻转+形态学+滤波+缩放+旋转)
OpenCV教程03:绘制图形(线段、矩形、圆形、椭圆、多边形、箭头线)+水印文本

1.准备一张要输入的图像素材,没有的话也可以拿下面的图片练习一下,大小为250250或300300。基于OpenCV+tkinter的图像处理系统1.0,主要功能,翻转+形态学+滤波+缩放+旋转的示例用法,代码已跑亲测有效。感兴趣的朋友,自己学习一下。当然运行该代码,一些必要的第三方安装包是必不可少的,自己看着源码,逐一模块安装一下。

2.py源码不足的地方:
a.仅支持png和jpe的图片格式,如果你要添加其他的图片格式,自己在源码里面的通用对话框增加一些格式,默认是显示png格式。
b.没有办法,保存生成的新图片,当然你可以参考,历史pillow教程博文中,tk是如何显示和保存图片的。
Pillow教程10:设计博文的文字背景封面图,再也不担心找不到素材了
c.显示图片的窗口大小是固定的,输入的图像最好为250*250,这样刚好显示。如果你要显示更大的,自己调一下tk窗口组件的大小。
在这里插入图片描述
运行后的效果
在这里插入图片描述

# -*- coding: utf-8 -*-
# @Author : 小红牛
# 微信公众号:WdPython
import tkinter.messagebox as messagebox
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk
import os
from tkinter.filedialog import askopenfilename, asksaveasfilename
import cv2
import numpy as npfile_path = os.path.dirname(__file__)
test_file_path = file_path + os.sep + 'example.png'WIN_WIDTH = 700
WIN_HEIGHT = 400class Image_sys():def __init__(self):self.root = tk.Tk()self.root.geometry('700x400+80+80')self.root.title('图像处理系统1.0——微信公众号:WdPython')  # 设置窗口标题# self.root.iconbitmap('icon/icon.ico')  # 设置窗口图标# scnWidth, scnHeight = self.root.maxsize()# 屏幕中心居中# center = '%dx%d+%d+%d' % (WIN_WIDTH, WIN_HEIGHT, (scnWidth - WIN_WIDTH) / 2, (scnHeight - WIN_HEIGHT) / 2)# print(center)# 设置窗口的大小宽x高+偏移量# self.root.geometry(center)# 调用方法会禁止根窗体改变大小self.root.resizable(False, False)menubar = tk.Menu(self.root)  # 创建菜单栏 (Menu)self.root.config(menu=menubar)# 创建文件下拉菜单# 文件菜单下 tearoff=0 表示有没有分隔符,默认为有分隔符file_menu = tk.Menu(menubar, tearoff=0)# 为顶级菜单实例添加菜单,并级联相应的子菜单实例menubar.add_cascade(label="文件", menu=file_menu)file_menu.add_command(label="打开测试文件", command=self.open_test_file)file_menu.add_command(label="打开自定义文件", command=self.open_file)file_menu.add_command(label="复原", command=self.recover)file_menu.add_command(label="清除", command=self.clear)file_menu.add_command(label="退出", command=self.exit_sys)# 创建翻转下拉菜单turn_menu = tk.Menu(menubar, tearoff=0)menubar.add_cascade(label="翻转", menu=turn_menu)turn_menu.add_command(label="水平", command=self.flip_horizontal)turn_menu.add_command(label="垂直", command=self.flip_vertical)turn_menu.add_command(label="水平&垂直", command=self.flip_hor_ver)# 形态学morph_menu = tk.Menu(menubar, tearoff=0)menubar.add_cascade(label="形态学", menu=morph_menu)morph_menu.add_command(label="腐蚀", command=self.mor_corrosion)morph_menu.add_command(label="膨胀", command=self.mor_expand)morph_menu.add_command(label="开运算", command=self.mor_open_operation)morph_menu.add_command(label="闭运算", command=self.mor_close_operation)morph_menu.add_command(label="Morphological Gradient", command=self.mor_gradient)morph_menu.add_command(label="顶帽", command=self.mor_top_hat)morph_menu.add_command(label="黑帽", command=self.mor_black_hat)# 滤波filter_menu = tk.Menu(menubar, tearoff=0)menubar.add_cascade(label="滤波", menu=filter_menu)filter_menu.add_command(label="均值", command=self.filter_mean)filter_menu.add_command(label="方框", command=self.filter_box)filter_menu.add_command(label="高斯", command=self.filter_gauss)filter_menu.add_command(label="中值", command=self.filter_mid_value)filter_menu.add_command(label="双边", command=self.filter_bilateral)# 缩放scale_menu = tk.Menu(menubar, tearoff=0)menubar.add_cascade(label="缩放", menu=scale_menu)scale_menu.add_command(label="放大PyrUp", command=self.scale_pyrup)scale_menu.add_command(label="缩小PyrDown", command=self.scale_pyrdown)scale_menu.add_command(label="放大Resize", command=self.scale_zoom_in)scale_menu.add_command(label="缩小Resize", command=self.scale_zoom_out)# 旋转rotate_menu = tk.Menu(menubar, tearoff=0)menubar.add_cascade(label="旋转", menu=rotate_menu)rotate_menu.add_command(label="平移", command=self.rotate_offset)rotate_menu.add_command(label="仿射", command=self.rotate_affine)rotate_menu.add_command(label="透射", command=self.rotate_transmission)rotate_menu.add_command(label="顺时针-无缩放", command=self.rotate_clockwise)rotate_menu.add_command(label="顺时针-缩放", command=self.rotate_clockwise_zoom)rotate_menu.add_command(label="逆时针-缩放", command=self.rotate_anti_zoom)rotate_menu.add_command(label="零旋转-缩放", command=self.rotate_zero_zoom)# 帮助help_menu = tk.Menu(menubar, tearoff=0)menubar.add_cascade(label="帮助", menu=help_menu)help_menu.add_command(label="版权", command=self.help_copyright)help_menu.add_command(label="关于", command=self.help_about)# 创建一个容器,其父容器为self.rootself.frame_scr = ttk.LabelFrame(self.root, text="Scour image:")# padx  pady   该容器外围需要留出的空余空间self.frame_scr.place(x=80, y=30, width=250, height=250)# 创建一个容器,其父容器为self.rootself.frame_des = ttk.LabelFrame(self.root, text="Destination image:")# padx  pady   该容器外围需要留出的空余空间self.frame_des.place(x=370, y=30, width=250, height=250)# 创建两个labellabel_scr = ttk.Label(self.root, text='源图像', font=25, foreground='blue', anchor='center')label_scr.place(x=150, y=280, width=100, height=50)label_des = ttk.Label(self.root, text='目标图像', font=25, foreground='blue', anchor='center')label_des.place(x=450, y=280, width=100, height=50)self.label_scr_image = Noneself.label_des_image = Noneself.path = ''self.root.mainloop()def open_test_file(self):self.path = test_file_pathimage = Image.open(self.path)test_image = ImageTk.PhotoImage(image)if (self.label_des_image != None):self.label_des_image.pack_forget()  # 隐藏控件self.label_des_image = Noneif (self.label_scr_image == None):self.label_scr_image = tk.Label(self.frame_scr, image=test_image)self.label_scr_image.configure(image=test_image)self.label_scr_image.pack()self.root.mainloop()def open_file(self):# 打开文件对话框open_img_path = askopenfilename(initialdir=file_path,filetypes=[("png格式", "png"), ("jpg格式", "jpg"), ("bmp格式", "bmp")],parent=self.root,title='打开自定义图片')if (open_img_path == ''):returnelse:if (self.label_des_image != None):self.label_des_image.pack_forget()  # 隐藏控件self.label_des_image = Noneself.path = open_img_pathimage = Image.open(self.path)tk_image = ImageTk.PhotoImage(image)if (self.label_scr_image == None):self.label_scr_image = tk.Label(self.frame_scr, image=tk_image)self.label_scr_image.configure(image=tk_image)self.label_scr_image.pack()  # 显示控件self.root.mainloop()def recover(self):if (self.path == ''):returnimage = Image.open(self.path)tk_image = ImageTk.PhotoImage(image)if (self.label_des_image == None):returnself.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()def clear(self):if (self.label_scr_image != None):self.label_scr_image.pack_forget()  # 隐藏控件self.label_scr_image = Noneself.path = ''if (self.label_des_image != None):self.label_des_image.pack_forget()  # 隐藏控件self.label_des_image = Noneself.path = ''def exit_sys(self):quit_root = messagebox.askokcancel('提示', '真的要退出么!~')if (quit_root == True):self.root.destroy()returndef flip_horizontal(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# Flipped Horizontally 水平翻转image_hflip = cv2.flip(image, 1)image_pil_hflip = Image.fromarray(image_hflip)tk_image = ImageTk.PhotoImage(image_pil_hflip)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()def flip_vertical(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# Flipped Horizontally 水平翻转image_hflip = cv2.flip(image, 0)  # 垂直翻转image_pil_hflip = Image.fromarray(image_hflip)tk_image = ImageTk.PhotoImage(image_pil_hflip)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()def flip_hor_ver(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# Flipped Horizontally 水平翻转image_hflip = cv2.flip(image, -1)  # 水平垂直翻转image_pil_hflip = Image.fromarray(image_hflip)tk_image = ImageTk.PhotoImage(image_pil_hflip)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()def mor_corrosion(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# kernel = np.ones((5, 5), np.uint8)# 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_erosion = cv2.erode(image, kernel)  # 腐蚀image_pil_erosion = Image.fromarray(img_erosion)tk_image = ImageTk.PhotoImage(image_pil_erosion)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 膨胀def mor_expand(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# kernel = np.ones((5, 5), np.uint8)# 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_dilation = cv2.dilate(image, kernel)  # 膨胀image_pil_dilation = Image.fromarray(img_dilation)tk_image = ImageTk.PhotoImage(image_pil_dilation)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 开运算def mor_open_operation(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# kernel = np.ones((5, 5), np.uint8)# 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_open_operation = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)  # 开运算image_pil_open = Image.fromarray(img_open_operation)tk_image = ImageTk.PhotoImage(image_pil_open)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 闭运算def mor_close_operation(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# kernel = np.ones((5, 5), np.uint8)# 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_close_operation = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)  # 闭运算image_pil_close = Image.fromarray(img_close_operation)tk_image = ImageTk.PhotoImage(image_pil_close)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 形态学梯度:膨胀图减去腐蚀图,dilation - erosion,这样会得到物体的轮廓:def mor_gradient(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并# kernel = np.ones((5, 5), np.uint8)# 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_gradient = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)  # 形态学梯度image_pil_gradient = Image.fromarray(img_gradient)tk_image = ImageTk.PhotoImage(image_pil_gradient)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 顶帽def mor_top_hat(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并kernel = np.ones((7, 7), np.uint8)  # 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_top_hat = cv2.morphologyEx(image, cv2.MORPH_TOPHAT, kernel)  # 顶帽image_pil_top_hat = Image.fromarray(img_top_hat)tk_image = ImageTk.PhotoImage(image_pil_top_hat)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 黑帽def mor_black_hat(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并kernel = np.ones((7, 7), np.uint8)  # 指定核大小# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构img_black_hat = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)  # 黑帽image_pil_black_hat = Image.fromarray(img_black_hat)tk_image = ImageTk.PhotoImage(image_pil_black_hat)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()'''常见噪声有椒盐噪声和高斯噪声,椒盐噪声可以理解为斑点,随机出现在图像中的黑点或白点;高斯噪声可以理解为拍摄图片时由于光照等原因造成的噪声;这样解释并不准确,只要能简单分辨即可。'''# 均值滤波def filter_mean(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_mean = cv2.blur(image, (3, 3))  # 均值滤波image_pil_mean = Image.fromarray(img_mean)tk_image = ImageTk.PhotoImage(image_pil_mean)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 方框滤波方框滤波跟均值滤波很像,当可选参数normalize为True的时候,方框滤波就是均值滤波,# 如3×3的核,a就等于1/9;normalize为False的时候,a=1,相当于求区域内的像素和。def filter_box(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_box = cv2.boxFilter(image, -1, (3, 3), normalize=False)  # 方框滤波image_pil_box = Image.fromarray(img_box)tk_image = ImageTk.PhotoImage(image_pil_box)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 高斯滤波与两种滤波方式,卷积核内的每个值都一样,相当于图像区域中每个像素的权重也就一样。# 高斯滤波的卷积核权重并不相同,中间像素点权重最高,越远离中心的像素权重越小。# 高斯滤波相比均值滤波效率要慢,但可以有效消除高斯噪声,能保留更多的图像细节,所以经常被称为最有用的滤波器。def filter_gauss(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_gauss = cv2.GaussianBlur(image, (1, 1), 1)  # 方框滤波image_pil_gauss = Image.fromarray(img_gauss)tk_image = ImageTk.PhotoImage(image_pil_gauss)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 中值滤波,中值又叫中位数,是所有值排序后取中间的值。# 中值滤波就是用区域内的中值来代替本像素值,所以那种孤立的斑点,# 如0或255很容易消除掉,适用于去除椒盐噪声和斑点噪声。中值是一种非线性操作,效率相比前面几种线性滤波要慢。# 斑点噪声图,用中值滤波显然更好:def filter_mid_value(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_mid_value = cv2.medianBlur(image, 5)  # 中值滤波image_pil_mid_value = Image.fromarray(img_mid_value)tk_image = ImageTk.PhotoImage(image_pil_mid_value)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 双边滤波,模糊操作基本都会损失掉图像细节信息,尤其前面介绍的线性滤波器,图像的边缘信息很难保留下来。# 然而,边缘edge信息是图像中很重要的一个特征,所以这才有了双边滤波。def filter_bilateral(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_bilateral = cv2.bilateralFilter(image, 9, 75, 75)  # 双边滤波image_pil_bilateral = Image.fromarray(img_bilateral)tk_image = ImageTk.PhotoImage(image_pil_bilateral)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()# 图像金字塔操作的将是图像的像素问题(图像变清晰了还是模糊了)# 图像金字塔主要有两类:高斯金字塔和拉普拉斯金字塔。def scale_pyrup(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_pyrup = cv2.pyrUp(image)  # 高斯金字塔image_pil_pyrup = Image.fromarray(img_pyrup)tk_image = ImageTk.PhotoImage(image_pil_pyrup)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.pack()self.root.mainloop()def scale_pyrdown(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并img_pyrdown = cv2.pyrDown(image)  # 高斯金字塔image_pil_pyrdown = Image.fromarray(img_pyrdown)tk_image = ImageTk.PhotoImage(image_pil_pyrdown)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(relx=0,rely=0)# 放置组件的不同方式self.label_des_image.pack()self.root.mainloop()# 放大def scale_zoom_in(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并size = (2 * image.shape[1], 2 * image.shape[0])img_zoom_in = cv2.resize(image, size)  # 放大image_pil_zoom_in = Image.fromarray(img_zoom_in)tk_image = ImageTk.PhotoImage(image_pil_zoom_in)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)self.label_des_image.place(x=0, y=0)  # 放置组件的不同方式与金字塔放大相比对齐方式不同显示不同# self.label_des_image.pack()self.root.mainloop()# 缩小def scale_zoom_out(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并size = (int(0.3 * image.shape[1]), int(0.3 * image.shape[0]))img_zoom_out = cv2.resize(image, size)  # 放大image_pil_zoom_out = Image.fromarray(img_zoom_out)tk_image = ImageTk.PhotoImage(image_pil_zoom_out)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 平移def rotate_offset(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]direction = np.float32([[1, 0, 50], [0, 1, 50]])  # 沿x轴移动50,沿y轴移动50img_offset = cv2.warpAffine(image, direction, (width, height))image_pil_offset = Image.fromarray(img_offset)tk_image = ImageTk.PhotoImage(image_pil_offset)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 仿射-需要三个点坐标def rotate_affine(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]pts1 = np.float32([[50, 50], [200, 50], [50, 200]])pts2 = np.float32([[10, 100], [200, 50], [100, 250]])rot_mat = cv2.getAffineTransform(pts1, pts2)  # 沿x轴移动50,沿y轴移动50img_affine = cv2.warpAffine(image, rot_mat, (width, height))image_pil_affine = Image.fromarray(img_affine)tk_image = ImageTk.PhotoImage(image_pil_affine)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 透射 -需要四个点的坐标def rotate_transmission(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]pts1 = np.float32([[56, 65], [238, 52], [28, 237], [239, 240]])pts2 = np.float32([[0, 0], [250, 0], [0, 250], [250, 250]])rot_mat = cv2.getPerspectiveTransform(pts1, pts2)img_clockwise = cv2.warpPerspective(image, rot_mat, (250, 250))  # 透射与仿射的函数不一样image_pil_clockwise = Image.fromarray(img_clockwise)tk_image = ImageTk.PhotoImage(image_pil_clockwise)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 顺时针无缩放def rotate_clockwise(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]rotate_center = (width // 2, height // 2)rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=-45, scale=1)  # 旋转中心rotate_center,角度degree, 缩放scaleimg_clockwise = cv2.warpAffine(image, rot_mat, (width, height))image_pil_clockwise = Image.fromarray(img_clockwise)tk_image = ImageTk.PhotoImage(image_pil_clockwise)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 顺时针-缩放def rotate_clockwise_zoom(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]rotate_center = (width // 2, height // 2)rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=-45, scale=0.6)  # 旋转中心rotate_center,角度degree, 缩放scaleimg_clockwise_zoom = cv2.warpAffine(image, rot_mat, (width, height))image_pil_clockwise_zoom = Image.fromarray(img_clockwise_zoom)tk_image = ImageTk.PhotoImage(image_pil_clockwise_zoom)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 逆时针-缩放def rotate_anti_zoom(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]rotate_center = (width // 2, height // 2)rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=45, scale=0.6)  # 旋转中心rotate_center,角度degree, 缩放scaleimg_clockwise_zoom = cv2.warpAffine(image, rot_mat, (width, height))image_pil_clockwise_zoom = Image.fromarray(img_clockwise_zoom)tk_image = ImageTk.PhotoImage(image_pil_clockwise_zoom)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()# 零旋转-缩放def rotate_zero_zoom(self):if (self.path == ''):returnif (self.label_scr_image == None):returnimage = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片b, g, r = cv2.split(image)  # 三通道分离image = cv2.merge([r, g, b])  # 三通道合并width, height = image.shape[1], image.shape[0]rotate_center = (width // 2, height // 2)rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=0, scale=0.6)  # 旋转中心rotate_center,角度degree, 缩放scaleimg_zero_zoom = cv2.warpAffine(image, rot_mat, (width, height))image_pil_zero_zoom = Image.fromarray(img_zero_zoom)tk_image = ImageTk.PhotoImage(image_pil_zero_zoom)if (self.label_des_image == None):self.label_des_image = tk.Label(self.frame_des, image=tk_image)self.label_des_image.configure(image=tk_image)# self.label_des_image.place(x=0, y=0)self.label_des_image.pack()self.root.mainloop()def help_copyright(self):tk.messagebox.showinfo(title='版权', message='微信公众号:WdPython!~')def help_about(self):tk.messagebox.showinfo(title='关于', message='微信公众号:WdPython!~!~')if __name__ == '__main__':Image_sys()

完毕!!感谢您的收看

----------★★历史博文集合★★----------

我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame


文章转载自:
http://dinncoochreous.zfyr.cn
http://dinncoantimask.zfyr.cn
http://dinncolongish.zfyr.cn
http://dinncopleasaunce.zfyr.cn
http://dinncofrondage.zfyr.cn
http://dinncoorthographic.zfyr.cn
http://dinncoautoinjector.zfyr.cn
http://dinncodeepwater.zfyr.cn
http://dinncoprogenitrix.zfyr.cn
http://dinncoliterature.zfyr.cn
http://dinncoillegible.zfyr.cn
http://dinncoinjun.zfyr.cn
http://dinncosorbo.zfyr.cn
http://dinncocryptozoite.zfyr.cn
http://dinncocochromatograph.zfyr.cn
http://dinnconearctic.zfyr.cn
http://dinncopalpitation.zfyr.cn
http://dinncocynosure.zfyr.cn
http://dinncowrcb.zfyr.cn
http://dinncooxidative.zfyr.cn
http://dinncooversweet.zfyr.cn
http://dinncoevert.zfyr.cn
http://dinncomidge.zfyr.cn
http://dinncosaccharate.zfyr.cn
http://dinncoautomechanism.zfyr.cn
http://dinncoembryonated.zfyr.cn
http://dinncoslavonian.zfyr.cn
http://dinncoripped.zfyr.cn
http://dinncoreremouse.zfyr.cn
http://dinncocemically.zfyr.cn
http://dinncopotentiometer.zfyr.cn
http://dinncoswakara.zfyr.cn
http://dinncoscutari.zfyr.cn
http://dinncoisopropyl.zfyr.cn
http://dinncobaalism.zfyr.cn
http://dinnconand.zfyr.cn
http://dinncointerfoliar.zfyr.cn
http://dinncochamotte.zfyr.cn
http://dinncogamosepalous.zfyr.cn
http://dinncodeoxidant.zfyr.cn
http://dinncogrannie.zfyr.cn
http://dinncoshadowiness.zfyr.cn
http://dinncohomosexuality.zfyr.cn
http://dinncopizzicato.zfyr.cn
http://dinncofulsome.zfyr.cn
http://dinncoechopraxia.zfyr.cn
http://dinncoknifesmith.zfyr.cn
http://dinncobree.zfyr.cn
http://dinncoreviser.zfyr.cn
http://dinncowrought.zfyr.cn
http://dinncometalmark.zfyr.cn
http://dinncoequangular.zfyr.cn
http://dinncokwangchowan.zfyr.cn
http://dinncoprow.zfyr.cn
http://dinncotetralogy.zfyr.cn
http://dinnconiftic.zfyr.cn
http://dinncoakvabit.zfyr.cn
http://dinncozygoid.zfyr.cn
http://dinncoactiniform.zfyr.cn
http://dinncodexamphetamine.zfyr.cn
http://dinncoipecacuanha.zfyr.cn
http://dinncoobjection.zfyr.cn
http://dinncounerringly.zfyr.cn
http://dinncomultisense.zfyr.cn
http://dinnconostalgist.zfyr.cn
http://dinncoausterity.zfyr.cn
http://dinncopothole.zfyr.cn
http://dinncodisulfuram.zfyr.cn
http://dinncomeikle.zfyr.cn
http://dinncononagenarian.zfyr.cn
http://dinncorachides.zfyr.cn
http://dinncoquindecagon.zfyr.cn
http://dinncophytomer.zfyr.cn
http://dinncopurfle.zfyr.cn
http://dinncodobe.zfyr.cn
http://dinncoslackage.zfyr.cn
http://dinncohomopolymer.zfyr.cn
http://dinncovenostasis.zfyr.cn
http://dinncocottonade.zfyr.cn
http://dinncounannounced.zfyr.cn
http://dinncopainted.zfyr.cn
http://dinncolabradorean.zfyr.cn
http://dinncotamarugo.zfyr.cn
http://dinncogrill.zfyr.cn
http://dinncobasanite.zfyr.cn
http://dinncoetherial.zfyr.cn
http://dinncocognate.zfyr.cn
http://dinncopanterer.zfyr.cn
http://dinncocerebrate.zfyr.cn
http://dinncocental.zfyr.cn
http://dinncocavalier.zfyr.cn
http://dinncounremitted.zfyr.cn
http://dinncoleveling.zfyr.cn
http://dinncoenticement.zfyr.cn
http://dinncosubornation.zfyr.cn
http://dinncogodwin.zfyr.cn
http://dinncoadjust.zfyr.cn
http://dinncomisty.zfyr.cn
http://dinncobarterer.zfyr.cn
http://dinncomarchese.zfyr.cn
http://www.dinnco.com/news/108040.html

相关文章:

  • 衡水网站制作公司哪家专业广安网站seo
  • 政府网站建设(信科网络)网站免费推广软件
  • 禁止wordpress网站上传图片时自动生成三张图片方法最新一周新闻
  • 南昌网站建设公司网站建设公司网站设计报价方案
  • 亚马逊网站建设做什么做网络推广为什么会被抓
  • 德阳网站优化seo关键词排名优化案例
  • ajax网站开发技术游戏推广代理加盟
  • wordpress网站关键词设置济南搜索引擎优化网站
  • 制作个人网站怎么做c++培训班学费一般多少
  • 做网站需要缴什么费用神马搜索seo优化排名
  • 网站备案期间打不开软件开发培训班
  • 好看的网站界面设计公众号如何推广引流
  • 广州网站建设亅新科送推广福建网络seo关键词优化教程
  • 都江堰网站开发百度问一问官网
  • django商城网站开发的功能全国疫情高峰感染高峰
  • 网站建设相关技术市场调研报告怎么写范文
  • 小企业网站建设怎样合肥网站优化公司
  • 南通购物网站建设网站怎么接广告
  • 深圳建模板网站app营销推广方案
  • 佛山 顺德网站设计网络营销课程培训课程
  • 找合伙人做红木家具网站百度软件下载中心官方网站
  • 建设电商网站流程武汉seo工厂
  • wordpress定制seo专员工资一般多少
  • 北京 科技网站建设百度指数查询排行榜
  • 一个独立IP做几个网站比较合适搜一搜搜索
  • 网站怎么适配移动端指数基金怎么买
  • 中国建设银行网站解绑手机南宁seo优化
  • wordpress评论显示分页重庆百度seo代理
  • 网站建设商家同城广告发布平台
  • 废旧网站那个做的最好掉发脱发严重是什么原因