当前位置: 首页 > news >正文

万网网站公安备案系统谷歌浏览器2021最新版

万网网站公安备案系统,谷歌浏览器2021最新版,开发直播app多少钱,小米商城wordpress主题目录 1.灰度图亮度调整 2.图像模板匹配 3.图像裁剪处理 4.图像旋转处理 5.图像邻域与数据块处理 学习计算机视觉方向的几条经验: 1.学习计算机视觉一定不能操之过急,不然往往事倍功半! 2.静下心来,理解每一个函数/算法的过程和精髓&…

目录

1.灰度图亮度调整

2.图像模板匹配

3.图像裁剪处理

4.图像旋转处理

5.图像邻域与数据块处理


学习计算机视觉方向的几条经验:
1.学习计算机视觉一定不能操之过急,不然往往事倍功半!
2.静下心来,理解每一个函数/算法的过程和精髓,这个知识才真正是你的!
3.计算机视觉的参数非常多,你必须理解透并且学会运用,不然你只能做个调参侠!
4.做一件事就必须要从中学到什么,否则就算是再大的荣誉只是混来的,不真正属于你!
以上经验总结来自Neu.Ise.JiaT.Prof,也是Neu做cv的数一数二的教授了,希望能够带着这些经验继续前进,在cv的学习中有所感悟和收获!

1.灰度图亮度调整

灰度图介绍:
1.灰度图,又称灰阶图。把白色和黑色之间按照对数关系分为若干等级,称为灰度。
2.灰度一般是2的整数次幂并且每个像素采用8比特来表示,灰度可以被量化为256及。
3.改变像素的亮度值是增强图像的常用方法,采用某种函数变换进行增强即可,一般用的比较多的是指数函数。
4.以下我们将展示采用直方图进行增强的效果,对应的函数是histeq()函数。
histeq()函数:
J = histeq(I) 变换灰度图像 I,以使输出灰度图像J的直方图具有64个bin且大致平坦。
%%灰度图亮度调整
clear all
I = imread('tire.tif')
J = histeq(I)
figure
subplot(2,2,1)
imshow(I)
subplot(2,2,2)
imshow(J)
subplot(2,2,3)
imhist(I)
subplot(2,2,4)
imhist(J)
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','histeq','.png'])

2.图像模板匹配

图像模板匹配
1.模板匹配就是在一个图像中识别出与模板相似的区域
因此我们设定输入输出如下所示:
输入:一张原始图像和模板图像
输出:在原始图像中找到与模板图像相似的区域
2.算法的原理也很简单,就是我们拿着模板和一个给定的标准,寻找最贴近标准的图像即可。
对于计算机来说,逐次比对的过程可以是,设置一个与模板相同大小的window, 按照一定的步长,
步长可以自己设定,向左向右依次滑动,会得到不同的子区域,然后逐次比对模板和子区域,找出
最好最符合的就是最为相似的。
%%
%%template matching
%本题的标准就定在0.9
clear
a = imread('a.tif')
[ma na]=size(a)%获取大小
I = imread('text.png')
figure
imshow(I)
[mi,ni]=size(I)%获取大小
afft=fft2(a)%二维傅里叶变换
Ifft=fft2(I)%二维傅里叶变换%计算用于 FFT 的输出图像大小,这是两个图像大小之和减去1。
M = ma+mi-1
N = na+ni-1%拓展到相同的维度
afft(M,N)=0
Ifft(M,N)=0
filtered=ifft2(afft.*Ifft)%对扩展后的频域数据进行逆傅里叶变换
filtered=filtered(1:mi,1:ni)%提取相同的大小区域,方便后续匹配
filtered=filtered/max(max(filtered,[],1))%归一化操作
%将匹配结果中大于0.9的像素设置为1,小于等于0.9的像素设置为0。
result=filtered>0.9
%绘制可视化图
figure
subplot(2,2,1)%模板
imshow(a)
subplot(2,2,2)%匹配图
imshow(I)
subplot(2,2,3)
imshow(filtered)%归一化图全部是0-1
subplot(2,2,4)
imshow(result)%结果图
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','template_matching','.png'])

3.图像裁剪处理

图像的裁剪处理
1.图像的裁剪处理用到imresize()函数.
2.B = imresize(A,scale) 返回图像 B,它是将A的长宽大小缩放图像
scale倍之后的图像。输入图像 A 可以是灰度图像、RGB 图像、二值图像或分类图像。
%%
%图像裁剪
clear
figure
I = imread('ci.bmp')
J = imresize(I,0.5);%边缩小0.5倍
figure
imshow(I)
figure
imshow(J)

4.图像旋转处理


%%
和图像的裁剪差不多,我们也就不细讲了
%%
%图像旋转
clear
I = imread('ci.bmp')
I1 = imrotate(I,45);
% I1 = imresize(I,2,'nearest');
figure
subplot(1,2,1)
imshow(I)
subplot(1,2,2)
imshow(I1,[])
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','iamge_imrptate','.png'])

5.图像邻域与数据块处理

5.图像邻域与数据块处理:
1.某些图像处理运算需要分段处理图像,而不是一次处理整个图像。
2.滑动邻域运算通过对每个像素邻域应用算法,以一次一个像素的方式处理图像。
3.在另一种数据块处理中,图像被分成大小相等且不重叠的数据块,并对每个不同数据块应用算法。
然后,对邻域和数据块进行重组以形成输出图像。
%%
%5.图像邻域与数据块处理
clear
I = imread('tire.tif')
f= inline('uint8(round(std2(x)*ones(size(x))))')
I2 = blkproc(I,[8,8],f)%邻域处理
%绘图可视化
figure
subplot(1,2,1)
imshow(I)
subplot(1,2,2)
imshow(I2,[])
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','image block operation','.png'])

http://www.dinnco.com/news/10808.html

相关文章:

  • 汕头市濠江区政府门户网站上海高端网站定制
  • 灵武市建设银行网站企业网络营销推广方案
  • 软件ui设计教程多合一seo插件破解版
  • 物流网站怎么做代理网站关键字优化价格
  • 深圳市做网站前十强引流用什么话术更吸引人
  • 湖州住房建设部网站网络管理系统
  • 哪些网站是做快消品的贵阳网站建设推广
  • 低成本门户网站开发营业推广的目标通常是
  • 开发一款网站需要多少钱武汉做seo
  • 凯天建设发展集团有限公司网站如何进行线上推广
  • 网站服务器基本配置seo薪酬如何
  • 打赏网站开发厦门百度公司
  • 大数据平台设计seo sem优化
  • 大学生家教网站开发新开传奇网站发布站
  • wordpress 最大上传搜索引擎优化工具有哪些
  • 新校区建设专题网站今日疫情实时数据
  • wordpress后台反应慢seo托管服务
  • 广东疫情最新情况风险区seo网站推广与优化方案
  • 性男女做视频网站系统清理优化工具
  • 公司网站建设的请示搜索优化整站优化
  • 如何提交网站连接到百度山东seo
  • 做黄图网站接广告好赚吗北京外贸网站优化
  • 清远企业网站建设代运营服务
  • 东莞商贸公司寮步网站建设价格帮收款的接单平台
  • 翻译网站怎么做怎么做好网络营销
  • 手机网站建设与布局推广app的单子都在哪里接的
  • wordpress 4.5 多站点不同数据做营销型网站的公司
  • 香港网站维护公司专业做网站的公司
  • 宝鸡seo优化谷歌seo优化排名
  • 广州网站建设费百度优化排名