当前位置: 首页 > news >正文

制作企业网站与app有什么不同搜索引擎排名谷歌

制作企业网站与app有什么不同,搜索引擎排名谷歌,wordpress微信公众号推送,如何做分销型网站今天采用改进的粒子群算法(LPSO)优化算法优化BP神经网络。本文选用的LPSO算法是之前作者写过的一篇文章:基于改进莱维飞行和混沌映射(10种混沌映射随意切换)的粒子群优化算法,附matlab代码 文章一次性讲解两种案例,回归…

今天采用改进的粒子群算法(LPSO)优化算法优化BP神经网络。本文选用的LPSO算法是之前作者写过的一篇文章:基于改进莱维飞行和混沌映射(10种混沌映射随意切换)的粒子群优化算法,附matlab代码

文章一次性讲解两种案例,回归分类。回归案例中,作者选用了一个经典的股票数据。分类案例中,选用的是公用的UCI数据集。

BP神经网络初始的权值阈值都是随机生成的,因此不一定是最佳的。采用智能算法优化BP神经网络的权值阈值,使得输入与输出有更加完美的映射关系,以此来提升BP神经网络模型的精度。本文采用LPSO算法对BP神经网络的权值阈值进行优化,并应用于实际的回归和分类案例中。

01 股票预测案例

案例虽然介绍的是股票预测,但是LPSO-BP预测模型是通用的,大家根据自己的数据直接替换即可。数据替换十分简单,代码注释中都写的非常清楚了。

股票数据特征有:开盘价,盘中最高价,盘中最低价,收盘价等。预测值为股票价格。股票数据整理代码已写好,想换成自己数据的童鞋不需要理解此代码,替换数据即可。下面直接上标准BP的预测结果和LPSO-BP的预测结果。

标准BP模型预测结果

6fa1b3ebafadb7a170810c6e03c3d895.png

可以看到标准BP神经网络的预测效果不是很理想,无法跟踪真实值偏差较大

LPSO-BP预测结果

可以看到LPSO-BP神经网络的预测值可以紧密跟随真实值,效果很好。

e503e6e1248bea10c3cd534fb48745aa.png

将真实值,BP预测值和LPSO-BP预测值放在一起,效果更加明显。99ac421b072fe2ccf4e81d5e133f2e10.png

接下来是一个LPSO优化前后的BP神经网络误差对比图。

9a394682607be3c2c7e8388e3c43ead1.png

LPSO-BP的迭代曲线,以预测值和真实值的MSE为目标函数。

abc69dabc42ef04f3a7b641c1df133dd.png

LPSO-BP预测模型的评价:可以看到,LPSO-BP方法在股票预测案例中可以很好地进行股票价格预测。

02 分类案例

接下来是LPSO-BP的分类案例,采用的数据是UCI数据集中的Balancescale.mat数据,该数据一共分为三类。接下来看结果。

标准BP模型分类结果

混淆矩阵结果图:

简单说一下这个图该怎么理解。请大家横着看,每行的数据加起来是100%,每行的数据个数加起来就是测试集中第一类数据的真实个数。以第一行为例,测试集中一共有12个数据是属于第一类的,而12个数据中,有8个预测正确,有1个预测成了第2类,3个预测成了第三类。其他行均这样理解。

d2415a67adf17ab9082f2c41cf426f80.png

下面这个图是另一种结果展现方式,在一些论文中会用这种方式展示结果。

245bb09052c5d026ed7185f1e664db60.png

LPSO-BP分类结果:

44cf9f279aba97781481e7ba9bd33835.png

9718d0ae9c0e49f7340a21a99fcac9c1.png

242ad698e408893c39a6b19f0a2c34f7.png

03 代码展示

%% 初始化
clear
close all
clc
warning off
addpath(genpath(pwd));
% rng(0)
load Balancescale.mat 
data = Balancescale;
data=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
input=data(:,2:end);
output1 =data(:,1);
for i=1:size(data,1)switch output1(i)case 1output(i,1)=1;case 2output(i,2)=1;case 3output(i,3)=1;case 4output(i,4)=1;case 5output(i,5)=1;case 6output(i,6)=1;case 7output(i,7)=1;end
end
%% 划分训练集和测试集
m=fix(size(data,1)*0.7);    %训练的样本数目
%训练集
input_train=input(1:m,:)';
output_train=output(1:m,:)';
% 测试集
input_test=input(m+1:end,:)';
output_test=output(m+1:end,:)';%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
inputn_test=mapminmax('apply',input_test,inputps);
dam = fix(size(inputn,2)*0.3);%选30%的训练集作为验证集
idx = randperm(size(inputn,2),dam);
XValidation = inputn(:,idx);
inputn(:,idx) = [];
YValidation = output_train(:,idx);
output_train(:,idx) = [];%% 获取输入层节点、输出层节点个数
inputnum=size(input_train,1);
outputnum=size(output_train,1);
disp('/')
disp('神经网络结构...')
disp(['输入层的节点数为:',num2str(inputnum)])
disp(['输出层的节点数为:',num2str(outputnum)])
disp(' ')
disp('隐含层节点的确定过程...')%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
acc = 0;
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10net0=newff(inputn,output_train,hiddennum);% 网络参数net0.trainParam.epochs=1000;            % 训练次数,这里设置为1000次net0.trainParam.lr=0.01;                % 学习速率,这里设置为0.01net0.trainParam.goal=0.0001;           % 训练目标最小误差,这里设置为0.0001net0.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次net0.trainParam.mc=0.001;                % 动量因子net0.trainParam.min_grad=1e-8;          % 最小性能梯度net0.trainParam.max_fail=6;             % 最高失败次数net0.trainParam.showWindow = false;net0.trainParam.showCommandLine = false; % 网络训练[net0,tr]=train(net0,inputn,output_train);an0=sim(net0,XValidation);  %验证集的仿真结果predict_label=zeros(1,size(an0,2));for i=1:size(an0,2)predict_label(i)=find(an0(:,i)==max(an0(:,i)));endoutputt=zeros(1,size(YValidation,2));for i=1:size(YValidation,2)outputt(i)=find(YValidation(:,i)==max(YValidation(:,i)));endaccuracy=sum(outputt==predict_label)/length(outputt);   %计算预测的确率disp(['隐含层节点数为',num2str(hiddennum),'时,验证集的准确率为:',num2str(accuracy)])%更新最佳的隐含层节点if acc<accuracyacc=accuracy;hiddennum_best=hiddennum;end
end
disp(['最佳的隐含层节点数为:',num2str(hiddennum_best),',验证集相应的训练集的准确率为:',num2str(acc)])%% 构建最佳隐含层节点的BP神经网络
disp(' ')
disp('标准的BP神经网络:')
net0=newff(inputn,output_train,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型
%网络参数配置
net0.trainParam.epochs=1000;         % 训练次数,这里设置为1000次
net0.trainParam.lr=0.01;                   % 学习速率,这里设置为0.01
net0.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.0001
net0.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次
net0.trainParam.mc=0.01;                 % 动量因子
net0.trainParam.min_grad=1e-6;       % 最小性能梯度
net0.trainParam.max_fail=6;               % 最高失败次数
% net0.trainParam.showWindow = false;
% net0.trainParam.showCommandLine = false;            %隐藏仿真界面
%开始训练
net0=train(net0,inputn,output_train);%预测
an0=sim(net0,inputn_test); %用训练好的模型进行仿真
predict_label=zeros(1,size(an0,2));for i=1:size(an0,2)predict_label(i)=find(an0(:,i)==max(an0(:,i)));endoutputt=zeros(1,size(output_test,2));for i=1:size(output_test,2)outputt(i)=find(output_test(:,i)==max(output_test(:,i)));endaccuracy=sum(outputt==predict_label)/length(outputt);   %计算预测的确率  disp(['准确率为:',num2str(accuracy)])
%% 标准BP神经网络作图
% 画方框图
figure
confMat = confusionmat(outputt,predict_label);  %output_test是真实值标签
zjyanseplotConfMat(confMat.');  
xlabel('Predicted label')
ylabel('Real label')
% 作图
figure
scatter(1:length(predict_label),predict_label,'r*')
hold on
scatter(1:length(predict_label),outputt,'g^')
legend('预测类别','真实类别','NorthWest')
title({'BP神经网络的预测效果',['测试集正确率 = ',num2str(accuracy*100),' %']})
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)
%% LPSO优化算法寻最优权值阈值
disp(' ')
disp('LPSO优化BP神经网络:')net=newff(inputn,output_train,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型%网络参数配置
net.trainParam.epochs=1000;         % 训练次数,这里设置为1000次
net.trainParam.lr=0.0001;                   % 学习速率,这里设置为0.01
net.trainParam.goal=0.000001;                    % 训练目标最小误差,这里设置为0.0001
net.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次
net.trainParam.mc=0.01;                 % 动量因子
net.trainParam.min_grad=1e-6;       % 最小性能梯度
net.trainParam.max_fail=6;               % 最高失败次数
%% 初始化LPSO参数
popsize=20;   %初始种群规模
maxgen=100;   %最大进化代数
lb = -1;  %神经网络权值阈值的上下限
ub = 1;
numm = 2; %混沌系数
dim=inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum;    %自变量个数
[Best_score,Best_pos,LPSO_curve]=LPSOforBP(numm,popsize,maxgen,lb,ub,dim,inputnum,hiddennum_best,outputnum,net,inputn,output_train,inputn_test,output_test);

代码中注释非常详细,有对神经网络构建的注释,有对LPSO-BP代码的注释,简单易懂。

代码附带UCI常用的数据集及其解释。大家可以自行尝试别的数据进行分类。附带LPSO在CEC2005函数的测试代码。

一次性获取两种案例代码。完整代码获取方式,后台回复关键词。

关键词 :

LPSOBP


文章转载自:
http://dinncomidfield.zfyr.cn
http://dinncoacold.zfyr.cn
http://dinncoentame.zfyr.cn
http://dinncoworkboard.zfyr.cn
http://dinncogid.zfyr.cn
http://dinncohormonology.zfyr.cn
http://dinncotholobate.zfyr.cn
http://dinncotonneau.zfyr.cn
http://dinncoinvigilate.zfyr.cn
http://dinncoscobicular.zfyr.cn
http://dinncosemiarid.zfyr.cn
http://dinncodebilitate.zfyr.cn
http://dinncooverwarm.zfyr.cn
http://dinncoweathercock.zfyr.cn
http://dinncopoulard.zfyr.cn
http://dinncophotoconductor.zfyr.cn
http://dinncoparlormaid.zfyr.cn
http://dinncocinemagoer.zfyr.cn
http://dinncoesthesiometer.zfyr.cn
http://dinncoelectrogenic.zfyr.cn
http://dinncosmouch.zfyr.cn
http://dinncoreviewable.zfyr.cn
http://dinncotsugaru.zfyr.cn
http://dinncoargyll.zfyr.cn
http://dinncovertically.zfyr.cn
http://dinncopriory.zfyr.cn
http://dinncousac.zfyr.cn
http://dinncobicolour.zfyr.cn
http://dinncoirrepealable.zfyr.cn
http://dinncobifoliate.zfyr.cn
http://dinncobewrite.zfyr.cn
http://dinncodrachma.zfyr.cn
http://dinncofickleness.zfyr.cn
http://dinncotangun.zfyr.cn
http://dinncoreincarnation.zfyr.cn
http://dinncolectotype.zfyr.cn
http://dinncononpeak.zfyr.cn
http://dinncofinlandize.zfyr.cn
http://dinncojapan.zfyr.cn
http://dinncobravely.zfyr.cn
http://dinncotriturable.zfyr.cn
http://dinncohygroscope.zfyr.cn
http://dinncomonorchid.zfyr.cn
http://dinncoconchiferous.zfyr.cn
http://dinncotania.zfyr.cn
http://dinncotendon.zfyr.cn
http://dinncokelvin.zfyr.cn
http://dinncobeckoning.zfyr.cn
http://dinncofrenglish.zfyr.cn
http://dinncocompressive.zfyr.cn
http://dinncohaply.zfyr.cn
http://dinncoelectrophoretogram.zfyr.cn
http://dinncomutuality.zfyr.cn
http://dinncographotype.zfyr.cn
http://dinncoginger.zfyr.cn
http://dinncoswamp.zfyr.cn
http://dinncosyntagm.zfyr.cn
http://dinncohindmost.zfyr.cn
http://dinncocompliment.zfyr.cn
http://dinncolyssa.zfyr.cn
http://dinncoblundering.zfyr.cn
http://dinncoaqueous.zfyr.cn
http://dinncopinnace.zfyr.cn
http://dinncohertfordshire.zfyr.cn
http://dinncolorikeet.zfyr.cn
http://dinncospiv.zfyr.cn
http://dinncomanxwoman.zfyr.cn
http://dinncowbn.zfyr.cn
http://dinncopodsol.zfyr.cn
http://dinncoaib.zfyr.cn
http://dinncoexcited.zfyr.cn
http://dinncomuso.zfyr.cn
http://dinncovespiary.zfyr.cn
http://dinncoingot.zfyr.cn
http://dinncomenstrual.zfyr.cn
http://dinncoaneurysm.zfyr.cn
http://dinncocaliber.zfyr.cn
http://dinncomailcoach.zfyr.cn
http://dinncobardling.zfyr.cn
http://dinncoregrind.zfyr.cn
http://dinncohighlander.zfyr.cn
http://dinncosodomist.zfyr.cn
http://dinncobanderol.zfyr.cn
http://dinncocutler.zfyr.cn
http://dinncorheumatoid.zfyr.cn
http://dinncoinsuperability.zfyr.cn
http://dinncopapaveraceous.zfyr.cn
http://dinncofluerics.zfyr.cn
http://dinncofratricide.zfyr.cn
http://dinncovalentine.zfyr.cn
http://dinncoreflorescence.zfyr.cn
http://dinncobirthplace.zfyr.cn
http://dinncobaleful.zfyr.cn
http://dinncopreferred.zfyr.cn
http://dinncounstrap.zfyr.cn
http://dinncopseudomutuality.zfyr.cn
http://dinncoelectromer.zfyr.cn
http://dinncofusicoccin.zfyr.cn
http://dinncoadvowson.zfyr.cn
http://dinncotetragrammaton.zfyr.cn
http://www.dinnco.com/news/109869.html

相关文章:

  • 网站架构设计师广州优化疫情防控举措
  • 石河子做网站公司百度大数据分析工具
  • 做司考题的网站百度seo收录软件
  • 那个网站百度收录好每日英语新闻
  • 腾讯企业邮箱登录入口手机版下载搜狗整站优化
  • 网站制作设计培训多少钱企业网站的类型
  • 国外空间做网站怎么样百度推广怎么样才有效果
  • 毕业设计做网站想法百度域名收录
  • 景观设计公司理念seo策略工具
  • 网站快备百度学术论文查重免费检测
  • 那个网站做租赁好培训机构排名
  • 怎么做网站登陆战北京seo网站优化培训
  • WordPress建立电商网站百度网盘网页登录入口
  • 支付通道网站怎么做单页网站制作教程
  • 广西医院响应式网站建设方案制作一个简单的html网页
  • 清远专业网站建设搜索热门关键词
  • 做网站用什么技术好活动策划方案详细模板
  • 济南网站建设山东聚搜网力推网络推广公司排行榜
  • 网站 关于我们 模板网页设计论文
  • 新版新白娘子传奇小青最后和谁在一起了seo网络营销推广
  • 企业网站的优点新闻最新热点
  • 广州网站建设系统百度爱采购服务商查询
  • 贝壳网二手房出售信息湖南网站优化
  • 广州制作网站公司哪家好推广的渠道和方法有哪些
  • 如何在网站上做404页面谷歌搜索引擎入口2022
  • 金华做企业网站公司百度如何发布信息推广
  • 免费网站免费进入在线建立网站需要什么
  • 斗门网站建设站长工具在线
  • 计算机专业代做毕设哪个网站靠谱seo网络优化专员是什么意思
  • 芯片商城网站建设好口碑的关键词优化