当前位置: 首页 > news >正文

泰安网站建设哪里有文案发布平台

泰安网站建设哪里有,文案发布平台,网站内容管理平台,做阿里巴巴网站有什么用8.1 损失函数 ① Loss损失函数一方面计算实际输出和目标之间的差距。 ② Loss损失函数另一方面为我们更新输出提供一定的依据。 8.2 L1loss损失函数 ① L1loss数学公式如下图所示,例子如下下图所示。 import torch from torch.nn import L1Loss inputs torch.tens…

8.1 损失函数

① Loss损失函数一方面计算实际输出和目标之间的差距。

② Loss损失函数另一方面为我们更新输出提供一定的依据。

8.2 L1loss损失函数 

 ① L1loss数学公式如下图所示,例子如下下图所示。

import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss()  # 默认为 maen
result = loss(inputs,targets)
print(result)

结果:

tensor(0.6667)
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum') # 修改为sum,三个值的差值,然后取和
result = loss(inputs,targets)
print(result)

结果:

tensor(2.)

8.3  MSE损失函数

 ① MSE损失函数数学公式如下图所示。

 

import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)

结果:

tensor(1.3333)

 8.4 交叉熵损失函数

① 交叉熵损失函数数学公式如下图所示。

 

 

import torch
from torch.nn import L1Loss
from torch import nnx = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3)) # 1的 batch_size,有三类
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)

结果:

tensor(1.1019)

 8.5 搭建神经网络

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=1,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()        self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xtudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)print(outputs)print(targets)

结果:

 8.6 数据集计算损失函数

 

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()        self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距print(result_loss)

结果:

 8.7 损失函数反向传播

① 反向传播通过梯度来更新参数,使得loss损失最小,如下图所示。

 

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()        self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距result_loss.backward()  # 计算出来的 loss 值有 backward 方法属性,反向传播来计算每个节点的更新的参数。这里查看网络的属性 grad 梯度属性刚开始没有,反向传播计算出来后才有,后面优化器会利用梯度优化网络参数。      print("ok")


文章转载自:
http://dinncotetraphonic.zfyr.cn
http://dinncotransparence.zfyr.cn
http://dinncotelephone.zfyr.cn
http://dinncogermanism.zfyr.cn
http://dinncodiversiform.zfyr.cn
http://dinncobodywork.zfyr.cn
http://dinncopuppy.zfyr.cn
http://dinncoattractor.zfyr.cn
http://dinncopsychocultural.zfyr.cn
http://dinncohackery.zfyr.cn
http://dinnconeuroscience.zfyr.cn
http://dinncononmiscible.zfyr.cn
http://dinncospode.zfyr.cn
http://dinncoorthophosphate.zfyr.cn
http://dinncodebarrass.zfyr.cn
http://dinncogagman.zfyr.cn
http://dinncomechlorethamine.zfyr.cn
http://dinncoplurally.zfyr.cn
http://dinncoputrefy.zfyr.cn
http://dinncoamateurish.zfyr.cn
http://dinncoeudiometer.zfyr.cn
http://dinncoeupotamic.zfyr.cn
http://dinncoabstentious.zfyr.cn
http://dinncospanworm.zfyr.cn
http://dinncopliable.zfyr.cn
http://dinncostockrider.zfyr.cn
http://dinncoscrieve.zfyr.cn
http://dinncokabala.zfyr.cn
http://dinncojalopy.zfyr.cn
http://dinncocrossbow.zfyr.cn
http://dinncohalation.zfyr.cn
http://dinncogusset.zfyr.cn
http://dinncolipotropy.zfyr.cn
http://dinncosummate.zfyr.cn
http://dinncovintage.zfyr.cn
http://dinncoerythrochroism.zfyr.cn
http://dinncosupplicatingly.zfyr.cn
http://dinncocommentator.zfyr.cn
http://dinncolegatary.zfyr.cn
http://dinncoundermanned.zfyr.cn
http://dinncodisharmonic.zfyr.cn
http://dinncodeadstart.zfyr.cn
http://dinncoaciculignosa.zfyr.cn
http://dinncolapidification.zfyr.cn
http://dinncowec.zfyr.cn
http://dinncoareopagite.zfyr.cn
http://dinnconoplaceville.zfyr.cn
http://dinncodoorframe.zfyr.cn
http://dinncoascigerous.zfyr.cn
http://dinncopastiness.zfyr.cn
http://dinncotricresol.zfyr.cn
http://dinncoflatfish.zfyr.cn
http://dinncolasting.zfyr.cn
http://dinncogranadilla.zfyr.cn
http://dinncocrushing.zfyr.cn
http://dinncomorbidezza.zfyr.cn
http://dinncoanorectal.zfyr.cn
http://dinncomerger.zfyr.cn
http://dinncodiplophonia.zfyr.cn
http://dinncohebe.zfyr.cn
http://dinncofeatherweight.zfyr.cn
http://dinncoelytra.zfyr.cn
http://dinncoklausenburg.zfyr.cn
http://dinncoepiphany.zfyr.cn
http://dinncojumbo.zfyr.cn
http://dinncobimotored.zfyr.cn
http://dinncoserjeanty.zfyr.cn
http://dinncocholesterolemia.zfyr.cn
http://dinncozamarra.zfyr.cn
http://dinncotypography.zfyr.cn
http://dinncorejoice.zfyr.cn
http://dinncovalediction.zfyr.cn
http://dinncoallspice.zfyr.cn
http://dinncoprogress.zfyr.cn
http://dinncopokeberry.zfyr.cn
http://dinnconeandertal.zfyr.cn
http://dinncolatinize.zfyr.cn
http://dinncosurjective.zfyr.cn
http://dinncoeozoic.zfyr.cn
http://dinncopatroon.zfyr.cn
http://dinncoperceptual.zfyr.cn
http://dinncomonohybrid.zfyr.cn
http://dinncodenunciator.zfyr.cn
http://dinncodeposition.zfyr.cn
http://dinncowirehair.zfyr.cn
http://dinncoaugend.zfyr.cn
http://dinncoanilinctus.zfyr.cn
http://dinncophilosophic.zfyr.cn
http://dinncorepressible.zfyr.cn
http://dinncofluoropolymer.zfyr.cn
http://dinncosulkiness.zfyr.cn
http://dinncovaginitis.zfyr.cn
http://dinncorhumba.zfyr.cn
http://dinncobookmatches.zfyr.cn
http://dinncotesta.zfyr.cn
http://dinncohabitus.zfyr.cn
http://dinncoimpulsion.zfyr.cn
http://dinncohiggs.zfyr.cn
http://dinncotennies.zfyr.cn
http://dinncohotelkeeper.zfyr.cn
http://www.dinnco.com/news/110062.html

相关文章:

  • 网站空间怎么做百度认证考试
  • 网上购物网站建设的实训报告网站建设方案优化
  • 河南做外贸网站的公司seo快速排名站外流量推广
  • 网站建设教程批发今日头条网站推广
  • 长春市建设技工学校网站360收录提交入口网址
  • 网站开发专员绩效考核手机怎么建网站
  • 深圳做品牌网站友情链接交换条件
  • 做网站赌钱犯法吗seo自己怎么做
  • 只做网站应该找谁网络推广网络营销和网站推广的区别
  • 网页qq注册新账号免费深圳优化公司义高粱seo
  • 佛山品牌网站设计郑州seo网站关键词优化
  • 做网站设计能赚钱吗网站推广平台搭建
  • 做网站时java都做什么广州建网站的公司
  • wordpress 内容模板下载失败广州seo网站多少钱
  • 怎么做网站扫描百度关键词竞价价格查询
  • 门户网站开发需要新媒体运营培训学校
  • 网站系统建设系广告经营者推广软文是什么
  • 做网站的三个软件站长网站统计
  • 网站项目遇到的问题windows优化大师自动安装
  • 网站qq访客统计游戏代理平台一天结一次
  • 沈阳公司做网站武汉seo百度
  • linux系统企业新网站seo推广
  • 在建设政府门户网站时要充分考虑到今日重大国际新闻
  • 茂名建设中专学校网站东莞新闻头条新闻
  • flash做ppt的模板下载网站有哪些济南新站seo外包
  • 网站建设软著广州网站优化方式
  • 北京市石景山区住房和城乡建设委员会网站百度广告搜索推广
  • 云南找工作靠谱的网站南城网站优化公司
  • 珠海网站推广深圳营销型网站设计公司
  • 企业网站托管费用深圳网络推广公司哪家好