当前位置: 首页 > news >正文

网络专业的网站建设价格网站生成app工具

网络专业的网站建设价格,网站生成app工具,做网站程序的步骤,长沙专业做网站公司有哪些MVP变换 MVP变换用来描述视图变换的任务,即将虚拟世界中的三维物体映射(变换)到二维坐标中。 MVP变换分为三步: 模型变换(model tranformation):将模型空间转换到世界空间(找个好的地方,把所…

MVP变换

MVP变换用来描述视图变换的任务,即将虚拟世界中的三维物体映射(变换)到二维坐标中。

MVP变换分为三步:

  • 模型变换(model tranformation):将模型空间转换到世界空间(找个好的地方,把所有人集合在一起,摆个pose)
  • 摄像机变换(view tranformation):将世界空间转换到观察空间(找到一个放相机的位置,往某一个角度去看)
  • 投影变换(projection tranformation):将观察空间转换到裁剪空间(茄子!)

在这之后,还有一个#视口变换

视图变换(View)

视图变换的目的是变换Camera位置到原点,上方为Y,观察方向为-Z,即

M v i e w = R v i e w T v i e w = [ x g ^ × t ^ y g ^ × t ^ z g ^ × t ^ 0 x t y t z t 0 x − g y g z − g 0 0 0 0 1 ] [ 1 0 0 − x e 0 1 0 − y c 0 0 1 − z c 0 0 0 1 ] \begin{align} M_{view}&=R_{view}T_{view}\\ &=\begin{bmatrix} x_{\hat{g}\times\hat{t}}& y_{\hat{g}\times\hat{t}}& z_{\hat{g}\times\hat{t}}& 0\\ x_{t}& y_{t}& z_{t}& 0\\ x_{-g}& y_{g}& z_{-g}& 0\\ 0& 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 0& 0& -x_{e}\\ 0& 1& 0& -y_{c}\\ 0& 0& 1& -z_{c}\\ 0& 0& 0& 1\end{bmatrix} \end{align} Mview=RviewTview= xg^×t^xtxg0yg^×t^ytyg0zg^×t^ztzg00001 100001000010xeyczc1
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
定义Camera:

  • Camera位置 e ⃗ \vec{e} e
  • 观察方向 g ^ \hat{g} g^
  • 视点上方向 t ^ \hat{t} t^

规定:

  • Camera的y轴正方向向上,z轴方向是 − x ⃗ × y ⃗ -\vec{x}\times \vec{y} x ×y (右手系)
  • 对物体进行运动,摄像机会跟随着一起运动保持相对位置不变。

变换Camera位置到原点,上方为Y,观察方向为-Z:

  1. e ⃗ \vec{e} e 移动到标准位置: T v i e w = [ 1 0 0 − x e 0 1 0 − y c 0 0 1 − z c 0 0 0 1 ] T_{view}=\begin{bmatrix}1& 0& 0& -x_{e}\\ 0& 1& 0& -y_{c}\\ 0& 0& 1& -z_{c}\\ 0& 0& 0& 1\end{bmatrix} Tview= 100001000010xeyczc1 (因为朝原点移动,所以为负)
  2. 旋转 g ^ \hat{g} g^到-Z , t ⃗ \vec{t} t Y g ^ × t ⃗ \hat{g}\times\vec{t} g^×t X R v i e w = [ x g ^ × t ^ y g ^ × t ^ z g ^ × t ^ 0 x t y t z t 0 x − g y g z − g 0 0 0 0 1 ] R_{view}=\begin{bmatrix}x_{\hat{g}\times\hat{t}}& y_{\hat{g}\times\hat{t}}& z_{\hat{g}\times\hat{t}}& 0\\ x_{t}& y_{t}& z_{t}& 0\\x_{-g}& y_{g}& z_{-g}& 0\\ 0& 0& 0& 1\end{bmatrix} Rview= xg^×t^xtxg0yg^×t^ytyg0zg^×t^ztzg00001

推导:这个过程是旋转X g ^ × t ^ \hat{g}\times\hat{t} g^×t^Y t ^ \hat{t} t^Z − g ^ -\hat{g} g^的逆过程。所以 R v i e w R_{view} Rview是这个逆过程的逆矩阵(正交矩阵的逆是转置矩阵):外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

模型变换和视图变换经常被一起叫作模型视图变换(ModelView Translation)

投影变换(Projection)

投影变换分为两种:

  • 正交投影变换:透视线平行
  • 透视投影变换:透视线相交,近大远小

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

正交投影

M o r t h o = [ 2 r − l 0 0 0 0 2 t − b 0 0 0 0 2 n − f 0 0 0 0 1 ] [ 1 0 0 − r + L 2 0 1 0 − t + b 2 0 0 1 − n + f 2 0 0 0 1 ] = [ 2 r − l 0 0 − r + l r − l 0 2 t − b 0 − t + b t − b 0 0 2 n − f − n + f n − f 0 0 0 1 ] \begin{align} M_{ortho}&=\begin{bmatrix}\frac{2}{r-l}& 0& 0& 0\\ 0& \frac{2}{t-b}& 0& 0\\ 0& 0& \frac{2}{n-f}& 0\\ 0& 0& 0& 1\end{bmatrix} \begin{bmatrix}1& 0& 0& -\frac{r+L}{2}\\ 0& 1& 0& -\frac{t+b}{2}\\ 0& 0& 1& -\frac{n+f}{2}\\ 0& 0& 0& 1\end{bmatrix}\\\\ &=\begin{bmatrix}\frac{2}{r-l}& 0& 0& -\frac{r+l}{r-l}\\ 0& \frac{2}{t-b}& 0& -\frac{t+b}{t-b}\\ 0& 0& \frac{2}{n-f}& -\frac{n+f}{n-f}\\ 0& 0& 0& 1\end{bmatrix} \end{align} Mortho= rl20000tb20000nf200001 1000010000102r+L2t+b2n+f1 = rl20000tb20000nf20rlr+ltbt+bnfn+f1

正交投影的核心:用一个立方体框住物体的 [ l , r ] × [ b , t ] × [ f , n ] [l,r]\times[b,t]\times[f,n] [l,r]×[b,t]×[f,n],把这个立方体变换到标准正方体 [ − 1 , 1 ] 3 [-1,1]^{3} [1,1]3中。

变换顺序:先移动(中点移动到原点),再缩放(基向量缩放比例为 2 长 / 宽 / 高 \frac{2}{长/宽/高} //2 )。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

注意事项:

  • 右手系:n>f
  • OpenGl是左手系

透视投影

M p e r = M o r t h o M p e r s p → − o r t h o = [ 2 r − l 0 0 − r + l r − l 0 2 t − b 0 − t + b t − b 0 0 2 n − f − n + f n − f 0 0 0 1 ] [ n 0 0 0 0 n 0 0 0 0 n + f − n f 0 0 1 0 ] = [ 2 n r − l 0 l + r l − r 0 0 2 n t − b b + t b − t 0 0 0 f + n n − f 2 f n f − n 0 0 1 0 ] \begin{align} M_{per}&=M_{ortho}M_{persp\rightarrow -ortho}\\\\ &=\begin{bmatrix}\frac{2}{r-l}& 0& 0& -\frac{r+l}{r-l}\\ 0& \frac{2}{t-b}& 0& -\frac{t+b}{t-b}\\ 0& 0& \frac{2}{n-f}& -\frac{n+f}{n-f}\\ 0& 0& 0& 1\end{bmatrix}\begin{bmatrix}n& 0& 0& 0\\ 0& n& 0& 0\\ 0& 0& n+f& -nf\\ 0& 0& 1& 0\end{bmatrix}\\\\ &=\begin{bmatrix}\frac{2n}{r-l}& 0&\frac{l+r}{l-r}& 0\\ 0& \frac{2n}{t-b}& \frac{b+t}{b-t}& 0\\ 0& 0& \frac{f+n}{n-f}& \frac{2fn}{f-n}\\ 0& 0& 1& 0\end{bmatrix} \end{align} Mper=MorthoMpersportho= rl20000tb20000nf20rlr+ltbt+bnfn+f1 n0000n0000n+f100nf0 = rl2n0000tb2n00lrl+rbtb+tnff+n100fn2fn0

透视投影的核心:用“远平面”和“近平面”框住物体,先把“远平面”向“近平面“挤压,然后做一次正交投影。
即透视投影分为两步:

  • 将透视投影转化为正交投影
  • 将正交投影转换到正则立方体

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

研究挤压:

规定:

  • 挤压过程中,近平面和远平面的z值不发生变换(中间要发生变化)
  • 挤压过程中,远平面中心原点 ( x , y ) T (x,y)^{T} (x,y)T不发生变化

挤压过程中的x,y变化的比例关系:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
x同理。
y ′ = n z y , x ′ = n z x y' = \frac{n}{z}y,~~x'=\frac{n}{z}x y=zny,  x=znx

用齐次坐标描述任一点的坐标变换:
[ x y z 1 ] → [ n x / z n y / z u n k n o w n 1 ] = [ n x n y z ⋅ u n k o w n z ] \begin{align} \begin{bmatrix}x\\ y\\ z\\ 1\end{bmatrix}\rightarrow \begin{bmatrix} nx/z\\ ny/z\\ unknown\\ 1\end{bmatrix}=\begin{bmatrix}nx\\ ny\\ z\cdot unkown\\ z\end{bmatrix} \end{align} xyz1 nx/zny/zunknown1 = nxnyzunkownz

把这个变换用齐次坐标矩阵表示:
M ( 4 × 4 ) [ x y z 1 ] = = [ n x n y z ⋅ u n k o w n z ] M(4\times 4)\begin{bmatrix}x\\ y\\ z\\ 1\end{bmatrix}==\begin{bmatrix}nx\\ ny\\ z\cdot unkown\\ z\end{bmatrix} M(4×4) xyz1 == nxnyzunkownz

根据矩阵乘法,可以写出M的大致形式:
M = [ n 0 0 0 0 n 0 0 ? ? ? ? 0 0 1 0 ] M=\begin{bmatrix}n& 0& 0& 0\\ 0& n& 0& 0\\ ?& ?& ?& ?\\ 0& 0& 1& 0\end{bmatrix} M= n0?00n?000?100?0

代入上面提到的两种点:

  • 近平面或远平面上的任一点(令 u n k n o w n = n , z = n unknown=n,z=n unknown=n,z=n): M [ x y n 1 ] = [ n x n y n 2 n ] M\begin{bmatrix}x\\ y\\ n\\ 1\end{bmatrix}=\begin{bmatrix}nx\\ ny\\ n^{2}\\ n\end{bmatrix} M xyn1 = nxnyn2n 根据矩阵乘法行操作: M 第三行 [ x y n 1 ] = n 2 M第三行\begin{bmatrix}x\\ y\\ n\\ 1\end{bmatrix}=n^{2} M第三行 xyn1 =n2 因为不涉及旋转,所以第三行与x,y无关。 [ 0 0 A B ] [ x y n 1 ] = n 2 \begin{bmatrix}0& 0& A& B\end{bmatrix}\begin{bmatrix}x\\ y\\ n \\ 1\end{bmatrix}=n^{2} [00AB] xyn1 =n2 即: A n + B = n 2 An+B=n^{2} An+B=n2
  • 远平面的原点(令 x = 0 , y = 0 , z = f x=0,y=0,z=f x=0,y=0,z=f): [ 0 0 f 1 ] → [ 0 0 f 2 f ] \begin{bmatrix}0\\ 0\\ f\\ 1\end{bmatrix} \rightarrow \begin{bmatrix}0\\ 0\\ f^{2}\\ f\end{bmatrix} 00f1 00f2f 同理可得: A f + B = f 2 Af+B=f^{2} Af+B=f2

综上所述,
A = n + f B = − n f A=n+f B=-nf A=n+fB=nf

求得变换矩阵为:
M p e r s p → − o r t h o = [ n 0 0 0 0 n 0 0 0 0 n + f − n f 0 0 1 0 ] M_{persp\rightarrow -ortho}=\begin{bmatrix}n& 0& 0& 0\\ 0& n& 0& 0\\ 0& 0& n+f& -nf\\ 0& 0& 1& 0\end{bmatrix} Mpersportho= n0000n0000n+f100nf0

得到透视投影矩阵为:
M p e r = M o r t h o M p e r s p → − o r t h o = [ 2 r − l 0 0 − r + l r − l 0 2 t − b 0 − t + b t − b 0 0 2 n − f − n + f n − f 0 0 0 1 ] [ n 0 0 0 0 n 0 0 0 0 n + f − n f 0 0 1 0 ] = [ 2 n r − l 0 l + r l − r 0 0 2 n t − b b + t b − t 0 0 0 f + n n − f 2 f n f − n 0 0 1 0 ] \begin{align} M_{per}&=M_{ortho}M_{persp\rightarrow -ortho}\\\\ &=\begin{bmatrix}\frac{2}{r-l}& 0& 0& -\frac{r+l}{r-l}\\ 0& \frac{2}{t-b}& 0& -\frac{t+b}{t-b}\\ 0& 0& \frac{2}{n-f}& -\frac{n+f}{n-f}\\ 0& 0& 0& 1\end{bmatrix}\begin{bmatrix}n& 0& 0& 0\\ 0& n& 0& 0\\ 0& 0& n+f& -nf\\ 0& 0& 1& 0\end{bmatrix}\\\\ &=\begin{bmatrix}\frac{2n}{r-l}& 0&\frac{l+r}{l-r}& 0\\ 0& \frac{2n}{t-b}& \frac{b+t}{b-t}& 0\\ 0& 0& \frac{f+n}{n-f}& \frac{2fn}{f-n}\\ 0& 0& 1& 0\end{bmatrix} \end{align} Mper=MorthoMpersportho= rl20000tb20000nf20rlr+ltbt+bnfn+f1 n0000n0000n+f100nf0 = rl2n0000tb2n00lrl+rbtb+tnff+n100fn2fn0

视口变换

视口变换
将处于标准平面映射到屏幕分辨率范围之内,即[-1,1]^2->[0,width]*[0,height], 其中width和height指屏幕分辨率大小

视锥

视锥表示看起来像顶部切割后平行于底部的金字塔的实体形状。这是透视摄像机可以看到和渲染的区域的形状。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
定义视锥:

  • 长宽比 Aspect
  • 垂直的角度 FovY

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

利用视锥得到物体长宽高:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

屏幕(Screen)

  • 二维数组,数组元素为像素
  • 典型的光栅成像设备

光栅(Raster)

  • 德语中的屏幕
  • 画在屏幕上

像素(Pixel <- PIcture element)

  • 像素是一个颜色均匀的小正方形
  • 颜色混合而成(红、绿、蓝)

屏幕空间

认为屏幕左下角是原点,向右是x,向上是y
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
规定:

  • 像素坐标(Pixel’s indices)是(x, y)形式,x, y都是整数。
  • 所有的像素都在(0, 0)到(width-1, height-1)之间
  • 像素的中心:(x+0.5, y+0.5)
  • 整个屏幕覆盖(0,0)to(width,height)

视口变换

要做的事情:
先不考虑z轴,把MVP后处于标准立方体 [ − 1 , 1 ] 3 [-1,1]^{3} [1,1]3映射到屏幕上。即
[ − 1 , 1 ] 2 → [ 0 , w i d t h ] × [ 0 , h e i g h t ] [-1, 1]^{2}\rightarrow [0,width]\times [0,height] [1,1]2[0,width]×[0,height]

总结:把虚拟世界的任意可视物体转换到屏幕:
M = M v i e w M p e r M c a m M m o d e l M=M_{view}M_{per}M_{cam}M_{model} M=MviewMperMcamMmodel


文章转载自:
http://dinncoblacklead.zfyr.cn
http://dinncoleeway.zfyr.cn
http://dinncorasc.zfyr.cn
http://dinncohyperalimentation.zfyr.cn
http://dinncorepandly.zfyr.cn
http://dinncobanneret.zfyr.cn
http://dinncoamoretto.zfyr.cn
http://dinncoagazed.zfyr.cn
http://dinncobenefaction.zfyr.cn
http://dinncorepression.zfyr.cn
http://dinncophthisiology.zfyr.cn
http://dinncomimical.zfyr.cn
http://dinncowashcloth.zfyr.cn
http://dinncobackpaddle.zfyr.cn
http://dinncoanilingus.zfyr.cn
http://dinncosmallage.zfyr.cn
http://dinncorelax.zfyr.cn
http://dinncojai.zfyr.cn
http://dinncointegrabel.zfyr.cn
http://dinncospicate.zfyr.cn
http://dinncobushelage.zfyr.cn
http://dinncogrumble.zfyr.cn
http://dinncorangership.zfyr.cn
http://dinncobatrachia.zfyr.cn
http://dinncoflight.zfyr.cn
http://dinncohesped.zfyr.cn
http://dinncorensselaerite.zfyr.cn
http://dinncoalgophagous.zfyr.cn
http://dinncolkg.zfyr.cn
http://dinncodumpy.zfyr.cn
http://dinncoenseal.zfyr.cn
http://dinncobundook.zfyr.cn
http://dinncoodbc.zfyr.cn
http://dinncoheliconia.zfyr.cn
http://dinncoduring.zfyr.cn
http://dinncodamnedest.zfyr.cn
http://dinncounharmful.zfyr.cn
http://dinncoconcurrent.zfyr.cn
http://dinncomuscovite.zfyr.cn
http://dinncodrillstock.zfyr.cn
http://dinncovince.zfyr.cn
http://dinncoulcerous.zfyr.cn
http://dinncoceroma.zfyr.cn
http://dinncoresponseless.zfyr.cn
http://dinncoplicated.zfyr.cn
http://dinncoisobaric.zfyr.cn
http://dinncoamps.zfyr.cn
http://dinncogallstone.zfyr.cn
http://dinncovalla.zfyr.cn
http://dinncopicnic.zfyr.cn
http://dinncounshackle.zfyr.cn
http://dinncotankbuster.zfyr.cn
http://dinncoexpectability.zfyr.cn
http://dinncoljubljana.zfyr.cn
http://dinncofasciate.zfyr.cn
http://dinncomicrotomy.zfyr.cn
http://dinncodishabilitate.zfyr.cn
http://dinncoquester.zfyr.cn
http://dinncodifferentiable.zfyr.cn
http://dinncoappendiculate.zfyr.cn
http://dinncosteamroll.zfyr.cn
http://dinncoperidot.zfyr.cn
http://dinncomonarchess.zfyr.cn
http://dinncoricebird.zfyr.cn
http://dinncoreroll.zfyr.cn
http://dinncopapacy.zfyr.cn
http://dinncoobvious.zfyr.cn
http://dinncopopery.zfyr.cn
http://dinncoarthrectomy.zfyr.cn
http://dinncocrawfish.zfyr.cn
http://dinncostoriette.zfyr.cn
http://dinncotwicer.zfyr.cn
http://dinncosatisfactorily.zfyr.cn
http://dinncopowerhouse.zfyr.cn
http://dinncoimidazole.zfyr.cn
http://dinncopuppetry.zfyr.cn
http://dinncocatercorner.zfyr.cn
http://dinncoepithelium.zfyr.cn
http://dinncobiothythm.zfyr.cn
http://dinncoreconsignment.zfyr.cn
http://dinncosupralinear.zfyr.cn
http://dinncotitograd.zfyr.cn
http://dinncosemiretractile.zfyr.cn
http://dinncooutriggered.zfyr.cn
http://dinncovaline.zfyr.cn
http://dinncoeuphroe.zfyr.cn
http://dinncoheterogametic.zfyr.cn
http://dinncoheteroptics.zfyr.cn
http://dinncodevelopmental.zfyr.cn
http://dinncochurchlike.zfyr.cn
http://dinnconearshore.zfyr.cn
http://dinncofungicide.zfyr.cn
http://dinncolivre.zfyr.cn
http://dinncodisrespect.zfyr.cn
http://dinncospirituality.zfyr.cn
http://dinncobruin.zfyr.cn
http://dinncothriftless.zfyr.cn
http://dinncophytogenic.zfyr.cn
http://dinncocruor.zfyr.cn
http://dinncoinquiet.zfyr.cn
http://www.dinnco.com/news/114232.html

相关文章:

  • 有关网站开发的国外书籍电子商务
  • 免费网站模块免费推广引流平台
  • 做网站开发的公司企业网页
  • 企业官方网站管理制度电商网站开发需要多少钱
  • vb语言做的网站关键词怎么做快速的有排名
  • 食品企业网站建设方案seo优化广告
  • 如何快速找到做网站的客户商业推广
  • 长业建设集团有限公司网站中国职业培训在线官方网站
  • 网站建设xs029网络推广怎么找客户
  • 服务佳的网站建设百度网址大全 简单版
  • 网站做签到功能竞价恶意点击立案标准
  • 厦门网站建设公司排名百度账号购买1元40个
  • 海珠做网站要多少钱枸橼酸西地那非片是什么
  • 临朐网站做的好的网络优化
  • 手机传奇网站武汉seo百度
  • 做网站的专业术语seo优化公司如何做
  • 广州建设厅网站苏州搜索引擎排名优化商家
  • 酒楼网站模板sem工作内容
  • 网站设置在设备之间共享什么意思海外独立站
  • 新手学做网站教程海外广告联盟平台推广
  • 建设信息网站广州seo优化效果
  • 那个网站可以做空比特币百度推广登录网站
  • 电子商务网站栏目搜索引擎营销的特点有
  • 长沙网建站如何外贸推广
  • 百度收录网站标题电脑培训班附近有吗
  • 做网站banner图起名最好的网站排名
  • 企业网站做的好的有什么公司中国疫情最新情况
  • 网站推广专业搜索引擎seo推广
  • 网站个人主页怎么做优秀营销软文范例500字
  • 做外贸网站一定要会英语吗群推广