当前位置: 首页 > news >正文

wordpress more-link东莞市网站seo内容优化

wordpress more-link,东莞市网站seo内容优化,苹果钓鱼网站怎么做,做网站可以使用免费空间吗简介 现在主流有两个框架pytorch和TensorFlow,本文主要介绍pytorch PyTorch:由 Facebook 的人工智能研究小组开发和维护。PyTorch 以其动态计算图(Dynamic Computational Graph)和易用性著称,非常适合研究人员和开发者进行实验和…

简介

现在主流有两个框架pytorch和TensorFlow,本文主要介绍pytorch

  • PyTorch:由 Facebook 的人工智能研究小组开发和维护。PyTorch 以其动态计算图(Dynamic Computational Graph)和易用性著称,非常适合研究人员和开发者进行实验和快速原型开发。
  • TensorFlow:由 Google 开发和维护。TensorFlow 是一个更加成熟和全面的框架,支持大规模的生产环境部署,特别是在云计算和分布式计算方面具有优势。

然后介绍两个小工具:

dir()打开该包,看看里面有什么东西;如果IDE使用的是pycharm的话,按住Ctrl直接跳转,输入函数的参数的时候按住Ctrl+P可以看需要填哪些参数

help()官方解释文档,教你如何使用该工具

神经网络搭建步骤

数据集介绍

 数据集为CIFAR10,

CIFAR-10 数据集由 10 个类的 60000 张 32x32 彩色图像组成,每个类有 6000 张图像。有 50000 张训练图像和 10000 张测试图像。图像大小为3x32x32

数据集分为 5 个训练批次和 1 个测试批次,每个批次有 10000 张图像。测试批次包含每个类中随机选择的 1000 张图像。训练批次包含按随机顺序排列的剩余图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次正好包含来自每个类的 5000 张图像。

以下是数据集中的类,以及每个类的 10 张随机图像:

运行下列代码会导入数据集,没有下载的会自动下载

datasets导入数据集

dataloader分发数据,每批次送入64图片进入网络训练

transform更改图片数据的类型,比如将PIL改成tensor类型

train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test = train_data.classes
print(test)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

搭建网络 

由官网可知(官网链接:PyTorch documentation — PyTorch 2.4 documentation),使用pytorch搭建网络至少需要重写2个函数,一个__init__() 初始化函数,另一个forward()前向传播函数,下图为官网截图:

按照官网给的例子我们重写,我们的网络结构如下图所示 

网络结构如下图所示

代码思路:输入:3x32x32--->最后输出10个参数,具体过程如下图所示:

 二维卷积参数计算公式如下图,根据输入输出计算padding和stride

代码实现

使用sequential()

class Wisdom(nn.Module):def __init__(self):super(Wisdom, self).__init__()self.model1 = Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(1024, 64),nn.Linear(64, 10))def forward(self, x):x = self.model1(x)return x

 不使用sequential()

class Wisdom(nn.Module):def __init__(self):super(Wisdom, self).__init__()self.conv1=Conv2d(3,32,5,padding=2)self.maxpool1=MaxPool2d(2)self.conv2=Conv2d(32,32,5,padding=2)self.maxpool2=MaxPool2d(2)self.conv3=Conv2d(32,64,5,padding=2)self.maxpool3=MaxPool2d(2)self.flatten=Flatten()self.linear1=Linear(1024,64)self.linear2= Linear(64, 10)def forward(self,x):x=self.conv1(x)x=self.maxpool1(x)x=self.conv2(x)x=self.maxpool2(x)x=self.conv3(x)x=self.maxpool3(x)x=self.flatten(x)x=self.linear1(x)x=self.linear2(x)return x

实例化神经网络对象,损失函数,优化器

#创建神经网络
wisdom = Wisdom()
wisdom=wisdom.cuda()
#损失函数
loss_fn= nn.CrossEntropyLoss()
loss_fn=loss_fn.cuda()
#优化器
learn_rate =0.01
optimizer = torch.optim.SGD(wisdom.parameters(),lr=learn_rate)

损失函数(Loss Function)

常见的损失函数包括:

选择哪种损失函数取决于具体的任务和模型类型。在训练过程中,目标是最小化损失函数的值,从而提高模型的预测准确性。

优化器

优化器(Optimizer)是机器学习中用于调整模型参数以最小化损失函数的算法。优化器通过迭代过程逐步更新模型的权重和偏置,以找到损失函数的最小值。以下是一些常用的优化器:

设置网络参数

使用writer = SummaryWriter("logs_train")可以可视化整个训练过程
#设置网络的一些参数
#记录的训练次数
total_train_step = 0
#记录测试次数
total_test_step = 0
#训练的轮数
epoch=10
#添加tensorboard
writer = SummaryWriter("logs_train")

 训练和验证网络并将重要信息可视化屏幕

重要代码解析:

wisdom.train()标志网络进入训练状态

loss = loss_fn(outputs,targets)计算损失函数

optimizer.zero_grad() 梯度置零,防止上个梯度对本轮训练产生影响
loss.backward()反向传播
optimizer.step()梯度更新

wisdom.eval()模型进入测试状态

将损失值和精度闯入writer并绘制曲线图

writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)

torch.save(wisdom,"./model_train/wisdom_{}.pth".format(i))保存训练好模型
for i in range(epoch):print("----第{}轮开始----".format(i+1))#开始训练#进入训练状态wisdom.train()for data in train_dataloader:imgs,targets = dataimgs=imgs.cuda()targets=targets.cuda()outputs = wisdom(imgs)loss = loss_fn(outputs,targets)#优化器调优optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 ==0:print("训练次数:{},loss:{}:".format(total_train_step,loss))writer.add_scalar("train_loss",loss.item(),total_train_step)#模型测试#模型进入测试状态wisdom.eval()total_test_loss=0total_accuracy = 0with torch.no_grad():# 提高推理速度和节省内存for data in test_dataloader:imgs,targets = dataimgs = imgs.cuda()targets = targets.cuda()outputs = wisdom(imgs )loss = loss_fn(outputs,targets)total_test_loss=total_test_loss+loss.item()accuracy = (outputs.argmax(1)==targets).sum()total_accuracy=total_accuracy+accuracyprint("整体测试集合的loss:{}".format(total_test_loss))print("整体测试集合的准确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)total_test_step +=1torch.save(wisdom,"./model_train/wisdom_{}.pth".format(i))print("模型已经保存!")#torch.save(wisdom.state_dict(),"./model_train/wisdom_{}.pth".format(i))
writer.close()

使用GPU加速训练

确保电脑有显卡并正确安装驱动,而且要正确下载对应cuda 

下载教程:

进入pytorch官网

根据自己的系统选择,一般使用anaconda 在Windows下进行python环境管理,复制红框部分,在Anaconda Prompt 粘贴运行,注意自己的cuda版本是否支持

查看cuda版本,打开英伟达控制面板,桌面右键或者系统右下角,然后点击系统信息,之后点击组件

GPU程序设置

在神经网络,损失函数的实例对象后加.cuda()即可,以及在图片数据后加.cuda()

wisdom=wisdom.cuda()
loss_fn=loss_fn.cuda()
imgs=imgs.cuda()
targets=targets.cuda()

 保存模型

torch.save(wisdom,"./model_train/wisdom_{}.pth".format(i))

使用训练好的网络进行分类任务

加载网络模型

model = torch.load("./model_train/wisdom_49.pth")

若出现runtime error 将模型加载方式换成下列语句,将GPU训练的模型映射到CPU

出现runtimer error 将模型加载方式换成下列语句,将GPU训练的模型映射到CPU

或者将分类的图片进行cuda加速

image = image.cuda()#使用GPU训练的模型需要加CUDA

 使用SummaryWriter使训练可视化

打开Anaconda Prompt再激活环境后运行下列命令:

tensorboard --logdir "D:\pyc_workspace\learn_pytorch\logs_train

上列的地址根据train.py代码中的这个语句确定

writer = SummaryWriter("logs_train")

一定要改成自己的文件地址,具体操作见下图

可视化结果如下图所示

最后解释一个语句,with torch.no_grad()提高推理速度和节省内存

with torch.no_grad():# 提高推理速度和节省内存for data in test_dataloader:imgs,targets = dataimgs = imgs.cuda()targets = targets.cuda()outputs = wisdom(imgs )loss = loss_fn(outputs,targets)total_test_loss=total_test_loss+loss.item()accuracy = (outputs.argmax(1)==targets).sum()total_accuracy=total_accuracy+accuracy

程序汇总 

train.py

使用cpu训练网络

import torchvision
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterfrom model import *train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)#length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练集长度:{}".format(train_data_size))
print("测试集长度:{}".format(test_data_size))#使用dataloader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)#创建神经网络
wisdom = Wisdom()
#损失函数
loss_fn= nn.CrossEntropyLoss()
#优化器
learn_rate =0.01
optimizer = torch.optim.SGD(wisdom.parameters(),lr=learn_rate)#设置网络的一些参数
#记录的训练次数
total_train_step = 0
#记录测试次数
total_test_step = 0
#训练的轮数
epoch=10
#添加tensorboard
writer = SummaryWriter("logs_train")
#tensorboard --logdir "D:\pyc_workspace\learn_pytorch\logs_train"for i in range(epoch):print("----第{}轮开始----".format(i+1))#开始训练#进入训练状态wisdom.train()for data in train_dataloader:imgs,targets = dataoutputs = wisdom(imgs)loss = loss_fn(outputs,targets)#优化器调优optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 ==0:print("训练次数:{},loss:{}:".format(total_train_step,loss))writer.add_scalar("train_loss",loss.item(),total_train_step)#模型测试#模型进入测试状态wisdom.eval()total_test_loss=0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataoutputs = wisdom(imgs )loss = loss_fn(outputs,targets)total_test_loss=total_test_loss+loss.item()accuracy = (outputs.argmax(1)==targets).sum()total_accuracy=total_accuracy+accuracyprint("整体测试集合的loss:{}".format(total_test_loss))print("整体测试集合的准确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)total_test_step +=1torch.save(wisdom,"./model_train/wisdom_{}.pth".format(i))print("模型已经保存!")#torch.save(wisdom.state_dict(),"./model_train/wisdom_{}.pth".format(i))
writer.close()

train_gpu.py 

使用GPU训练网络

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWritertrain_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test = train_data.classes
print(test)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)class Wisdom(nn.Module):def __init__(self):super(Wisdom, self).__init__()self.model1 = Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(1024, 64),nn.Linear(64, 10))def forward(self, x):x = self.model1(x)return x#length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练集长度:{}".format(train_data_size))
print("测试集长度:{}".format(test_data_size))#使用dataloader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)#创建神经网络
wisdom = Wisdom()
wisdom=wisdom.cuda()
#损失函数
loss_fn= nn.CrossEntropyLoss()
loss_fn=loss_fn.cuda()
#优化器
learn_rate =0.01
optimizer = torch.optim.SGD(wisdom.parameters(),lr=learn_rate)#设置网络的一些参数
#记录的训练次数
total_train_step = 0
#记录测试次数
total_test_step = 0
#训练的轮数
epoch=10
#添加tensorboard
writer = SummaryWriter("logs_train")
#tensorboard --logdir "D:\pyc_workspace\learn_pytorch\logs_train"for i in range(epoch):print("----第{}轮开始----".format(i+1))#开始训练#进入训练状态wisdom.train()for data in train_dataloader:imgs,targets = dataimgs=imgs.cuda()targets=targets.cuda()outputs = wisdom(imgs)loss = loss_fn(outputs,targets)#优化器调优optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 ==0:print("训练次数:{},loss:{}:".format(total_train_step,loss))writer.add_scalar("train_loss",loss.item(),total_train_step)#模型测试#模型进入测试状态wisdom.eval()total_test_loss=0total_accuracy = 0with torch.no_grad():# 提高推理速度和节省内存for data in test_dataloader:imgs,targets = dataimgs = imgs.cuda()targets = targets.cuda()outputs = wisdom(imgs )loss = loss_fn(outputs,targets)total_test_loss=total_test_loss+loss.item()accuracy = (outputs.argmax(1)==targets).sum()total_accuracy=total_accuracy+accuracyprint("整体测试集合的loss:{}".format(total_test_loss))print("整体测试集合的准确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)total_test_step +=1torch.save(wisdom,"./model_train/wisdom_{}.pth".format(i))print("模型已经保存!")#torch.save(wisdom.state_dict(),"./model_train/wisdom_{}.pth".format(i))
writer.close()

test.py

利用神经网络模型进行分类,记得把

img_path ="dog.jpg"改成自己的路径
import torch
import torchvision
from PIL import Image
from torch import nn
from torch.nn import Sequentialtrain_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
classes_list = train_data.classes#分类物体列表img_path ="dog.jpg"
# img_path ="airplane.jpg"
image = Image.open(img_path)
#image = image.convert("RGB")#只保留为3通道transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32,)),torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)
class Wisdom(nn.Module):def __init__(self):super(Wisdom, self).__init__()self.model1 = Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(1024, 64),nn.Linear(64, 10))def forward(self, x):x = self.model1(x)return x#加载网络模型
model = torch.load("./model_train/wisdom_49.pth")
#出现runtimer error 将模型加载方式换成下列语句,将GPU训练的模型映射到CPU
#model = torch.load("./model_train/wisdom_9.pth",map_location=torch.device("cpu"))
print(model)image=torch.reshape(image,(1,3,32,32))#增加batch_size维度
model.eval()
with torch.no_grad():image = image.cuda()#使用GPU训练的模型需要加CUDAoutput = model(image)
print(output)
classes_index=output.argmax(1).item()
print(classes_list)print("测试图片为:{}".format(classes_list[classes_index]))

总结:------>多看官网 <------


文章转载自:
http://dinncodisulphide.tpps.cn
http://dinncofashionably.tpps.cn
http://dinncolibel.tpps.cn
http://dinncocontract.tpps.cn
http://dinncouckers.tpps.cn
http://dinncosaint.tpps.cn
http://dinncowillowware.tpps.cn
http://dinnconewsworthy.tpps.cn
http://dinncoegilops.tpps.cn
http://dinncobeseem.tpps.cn
http://dinncotaffeta.tpps.cn
http://dinncoaustralopithecine.tpps.cn
http://dinncoconsenter.tpps.cn
http://dinncobendy.tpps.cn
http://dinncolecithin.tpps.cn
http://dinncoparonomasia.tpps.cn
http://dinncomester.tpps.cn
http://dinncoboanerges.tpps.cn
http://dinncosequestrotomy.tpps.cn
http://dinncohyphenise.tpps.cn
http://dinncostiver.tpps.cn
http://dinncosynsemantic.tpps.cn
http://dinncofinnicky.tpps.cn
http://dinncodizzily.tpps.cn
http://dinncodurban.tpps.cn
http://dinncocuspid.tpps.cn
http://dinnconarco.tpps.cn
http://dinncoimitated.tpps.cn
http://dinncolandowning.tpps.cn
http://dinncoirbm.tpps.cn
http://dinncopermanganate.tpps.cn
http://dinncoidylist.tpps.cn
http://dinncorubrician.tpps.cn
http://dinncoactinide.tpps.cn
http://dinncoimpertinence.tpps.cn
http://dinncoaneuploid.tpps.cn
http://dinncoburgundy.tpps.cn
http://dinncoscaremonger.tpps.cn
http://dinncoharmotome.tpps.cn
http://dinncomuffler.tpps.cn
http://dinncounidentifiable.tpps.cn
http://dinncoadmire.tpps.cn
http://dinncomuscadel.tpps.cn
http://dinncoplutology.tpps.cn
http://dinncotrichiasis.tpps.cn
http://dinncomonopolylogue.tpps.cn
http://dinncoleanness.tpps.cn
http://dinncopronominal.tpps.cn
http://dinncobasaltic.tpps.cn
http://dinncoproperties.tpps.cn
http://dinncocowichan.tpps.cn
http://dinncotrode.tpps.cn
http://dinncoembraceor.tpps.cn
http://dinncocoagulen.tpps.cn
http://dinncoracegoer.tpps.cn
http://dinncononagricultural.tpps.cn
http://dinncospokeshave.tpps.cn
http://dinncogreenish.tpps.cn
http://dinncotike.tpps.cn
http://dinncomess.tpps.cn
http://dinncospadger.tpps.cn
http://dinncoravelin.tpps.cn
http://dinncovelarity.tpps.cn
http://dinncoshopman.tpps.cn
http://dinncoaminoplast.tpps.cn
http://dinncoelectrovalence.tpps.cn
http://dinncoto.tpps.cn
http://dinncosatinbird.tpps.cn
http://dinncosocko.tpps.cn
http://dinncotrachyspermous.tpps.cn
http://dinncoconsonantal.tpps.cn
http://dinncofixt.tpps.cn
http://dinncolexica.tpps.cn
http://dinncomelitopol.tpps.cn
http://dinncorecoil.tpps.cn
http://dinncoanthobian.tpps.cn
http://dinncocontemplate.tpps.cn
http://dinncoyeuk.tpps.cn
http://dinncothough.tpps.cn
http://dinncoscrofulous.tpps.cn
http://dinncoblather.tpps.cn
http://dinncosoapie.tpps.cn
http://dinncosequentia.tpps.cn
http://dinncoabaft.tpps.cn
http://dinncopurlicue.tpps.cn
http://dinncobiparental.tpps.cn
http://dinncoforgo.tpps.cn
http://dinncodeclinator.tpps.cn
http://dinncooutre.tpps.cn
http://dinncosmarm.tpps.cn
http://dinncoboston.tpps.cn
http://dinncoelectrician.tpps.cn
http://dinncosheffield.tpps.cn
http://dinncoisogyre.tpps.cn
http://dinncorostella.tpps.cn
http://dinncohypethral.tpps.cn
http://dinncokilchoanite.tpps.cn
http://dinncomucilaginous.tpps.cn
http://dinncoabundant.tpps.cn
http://dinncoantecedency.tpps.cn
http://www.dinnco.com/news/114573.html

相关文章:

  • wordpress 插入音乐免费seo优化工具
  • 重庆网站建设必选承越seo关键词工具
  • 网站服务器响应时间过长关键词代发包收录
  • 青岛本地生活网常州seo
  • 局门户网站建设工作汇报平台怎样推广
  • wordpress 多菜单上海seo网站推广
  • 曰本真人性做爰免费网站百度统计代码安装位置
  • 西安草坪网站建设网络推广的好处
  • wordpress更换网站logo哈尔滨seo
  • 做彩票网站推广北京网聘咨询有限公司
  • 深圳网站制作公司平台全网品牌推广
  • 做vi设计的网站站长工具箱
  • 做百度推广网站排名互联网app推广具体怎么做
  • 自己做企业网站服务器2345网址导航中国最好
  • css动画免费seo工具汇总
  • 南宁 网站推广百度推广关键词越多越好吗
  • 备案 个人网站建设方案书免费发布网站seo外链
  • 广州市外贸网站建设企业app广告投放价格表
  • 网站导航栏三级菜单代码软文营销经典案例优秀软文
  • 做市场调研的网站脱发严重是什么原因引起的
  • 高端大气企业网站十大跨境电商erp排名
  • 两个网站放在同一个空间有什么影响吗百度账号设置
  • 济宁网上做科目一的网站seo挖关键词
  • 普陀做网站价格百度官网认证多少钱一年
  • 微信网站建设费用计入什么科目网络营销推广工具有哪些
  • 网站开发语言查询 蔡学镛南宁百度seo价格
  • 建设网站域名的选择深圳全网推广平台
  • 下做图软件在哪个网站下载器推广电话
  • 求个没封的w站2022企业高管培训课程有哪些
  • 南城免费做网站服务推广软文范例