当前位置: 首页 > news >正文

江门市外事侨务局网站党建设想学互联网从哪里入手

江门市外事侨务局网站党建设,想学互联网从哪里入手,网站返回首页怎么做,网站不收录是什么原因简介 平常在撰写论文时,会需要比较算法之间的计算时间。本篇文章给出几种测量 R 代码运行时间的方法。本文是小编学习过程中的笔记,主要参考博客1,2。 1. 使用 Sys.time() 小编通常使用 Sys.time() 函数来计算时间。首先记录当前运行时刻&…

简介

平常在撰写论文时,会需要比较算法之间的计算时间。本篇文章给出几种测量 R 代码运行时间的方法。本文是小编学习过程中的笔记,主要参考博客1,2。

1. 使用 Sys.time()

小编通常使用 Sys.time() 函数来计算时间。首先记录当前运行时刻,之后运行代码,并记录运行完成时刻的时间。最后将两者时间相减即可。下面给出一个例子:

myfunction <- function() { 
Sys.sleep(10) #系统休息 
}start_time <- Sys.time() # 记录初始时间
myfunction() # 运行你的代码
end_time <- Sys.time() # 记录终止时间end_time - start_time # 计算时间差
# Time difference of 10.00363 secs

2. 使用 toctoc 包

函数 tic()toc() 的使用方式与前面演示的 Sys.time() 类似。但是 toctoc 包更加方便。下面给出例子:

读者可以从 GitHub 或者 CRAN 上安装:

# CRAN
install.packages("tictoc")
# GitHub
library(devtools); devtools::install_github("collectivemedia/tictoc")

计算单个代码块

library(tictoc)
tic("sleeping")
print("falling asleep...")
sleep_for_a_minute()
print("...waking up")
toc()
# [1] "falling asleep..."
# [1] "...waking up"
# sleeping: 11.076 sec elapsed

嵌套多个计时器,注意这里的第一个 tic() 对应最后一个 toc()

tic("total")  #对应最后一个toc()
tic("data generation")
X <- matrix(rnorm(50000*1000), 50000, 1000)
b <- sample(1:1000, 1000)
y <- runif(1) + X %*% b + rnorm(50000)
toc()
tic("model fitting")
model <- lm(y ~ X)
toc()
toc()
# data generation: 3.383 sec elapsed
# model fitting: 42.452 sec elapsed
# total: 46.428 sec elapsed

3. 使用 system.time()

这个使用方式类似 Sys.time(),我们继续以 myfunction() 作为例子:

system.time({ myfunction() })
#  user    system  elapsed 
#  0.039   0.044   10.001

4. 使用 rbenchmark

该包中的 microbenchmark() 函数可以进行精确的测量和比较 R 表达式的执行时间。它提供了更准确的结果,可以替代 system.time() 使用。

可以通过 CRAN 或者 GitHub 安装:

# CRAN
install.packages("rbenchmark")
# GitHub
devtools::install_github("eddelbuettel/rbenchmark")

这里展示R-bloggers中的例子:使用三个计算方法比较计算线性回归系数所需的时间:

library(rbenchmark)benchmark("lm" = {X <- matrix(rnorm(1000), 100, 10)y <- X %*% sample(1:10, 10) + rnorm(100)b <- lm(y ~ X + 0)$coef},"pseudoinverse" = {X <- matrix(rnorm(1000), 100, 10)y <- X %*% sample(1:10, 10) + rnorm(100)b <- solve(t(X) %*% X) %*% t(X) %*% y},"linear system" = {X <- matrix(rnorm(1000), 100, 10)y <- X %*% sample(1:10, 10) + rnorm(100)b <- solve(t(X) %*% X, t(X) %*% y)},replications = 1000,columns = c("test", "replications", "elapsed","relative", "user.self", "sys.self"))#           test   replications elapsed relative user.self sys.self
# 3 linear system         1000   0.064    1.000     0.062    0.001
# 1            lm         1000   0.281    4.391     0.267    0.011
# 2 pseudoinverse         1000   0.082    1.281     0.079    0.002

观察 elapsed 的结果,可以看到 lm 方法计算时间是最长的。

注意:读者想使用该包进行计算时间,需要按照文章的形式,将自己的代码填入即可。

5. microbenchmark

该包是 rbenchmark 包的升级版本,不仅可以给出上面的结果,还能通过可视化的方式展示结果。

可以通过 CRAN 或者 GitHub 安装:

# CRAN
install.packages("microbenchmark")
# GitHub
remotes::install_github("joshuaulrich/microbenchmark")

该函数能够使用用户指定函数自动检查基准表达式的结果。我们再次比较三种计算线性模型系数向量的方法(重复运行了100次)。

library(microbenchmark)set.seed(2017)
n <- 10000
p <- 100
X <- matrix(rnorm(n*p), n, p)
y <- X %*% rnorm(p) + rnorm(100)check_for_equal_coefs <- function(values) {tol <- 1e-12  # 添加基准max_error <- max(c(abs(values[[1]] - values[[2]]),abs(values[[2]] - values[[3]]),abs(values[[1]] - values[[3]])))max_error < tol
}mbm <- microbenchmark("lm" = { b <- lm(y ~ X + 0)$coef },"pseudoinverse" = {b <- solve(t(X) %*% X) %*% t(X) %*% y},"linear system" = {b <- solve(t(X) %*% X, t(X) %*% y)},times = 100, #重复运行了100次check = check_for_equal_coefs) # 添加自通检查的标准mbm
# Unit: milliseconds
#           expr      min        lq      mean    median        uq      max neval cld
#             lm 96.12717 124.43298 150.72674 135.12729 188.32154 236.4910   100   c
#  pseudoinverse 26.61816  28.81151  53.32246  30.69587  80.61303 145.0489   100  b
#  linear system 16.70331  18.58778  35.14599  19.48467  22.69537 138.6660   100 a

注意:我们使用函数参数检查来检查三种方法返回的结果的相等性(最大误差为1e-12)。如果结果不相等,则 microbenchmark 将返回错误消息。

值得一提的是,该包还整合了 ggplot2 来绘制以上结果。你只需要使用 autoplot() 即可实现:

library(ggplot2)
autoplot(mbm)

小编有话说

本推文给出了 5 种计算代码时间的方法。如果只是简单的使用,通常小编采用第一种方法。如果需要比较不同结果,并绘图。最后一种方法或许是更好的选择。

科研相关问题可见:

http://www.dinnco.com/news/11628.html

相关文章:

  • 找我家是做的视频网站百度浏览器官方网站
  • 清远做网站的公司关键词优化公司哪家强
  • 站点创建成功有影响吗上海网站优化公司
  • 8848网站盈利模式媒体网络推广价格优惠
  • 合肥网站开发哪家好seo培训一对一
  • 一般vs做的网站的总体框架网页设计制作软件
  • 天津网上办事大厅官网昆明seo
  • 手机网站制作合同网站推广优化公司
  • semcms外贸网站管理系统北京十大营销策划公司
  • 三合一网站建设是指网站如何优化排名
  • 工商营业执照咨询电话24小时东莞百度网站排名优化
  • midasbuy充值官方网站下载seo是什么的缩写
  • 沧州企业网站优化现在最火的发帖平台
  • 杭州富阳网站建设全国十大跨境电商排名
  • 小型玩具企业网站建设初期阶段任务外链百科
  • 企业建设网站公司简介盘多多网盘资源库
  • 找建站公司电商网站设计
  • 陕西网站建站微信引流被加软件
  • 万户网络销售seo 首页
  • 我的网站织梦推广平台排名前十名
  • 做配音任务的网站快手推广网站
  • 北京大型网站建设seo专家招聘
  • 棋牌游戏网站模板44555pd永久四色端口
  • 信息服务平台网站名称品牌推广服务
  • 怎么看一个网站是由哪个网络公司做的seo快速排名网站优化
  • 个人网站可以做产品众筹吗seo网站优化流程
  • 固定ip做网站路由设置谷歌seo是什么职业
  • 网站关键字优化软件制作一个网站大概需要多少钱
  • 免费企业网站建设免费泉州百度推广咨询
  • 二维码生成器工具苏州整站优化