当前位置: 首页 > news >正文

网站建设协议怎么样做seo

网站建设协议,怎么样做seo,今日头条郑州头条新闻,html5 css3个人网站1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出: 其主要目的是:让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证&#xff…

1. 引言

Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出:

  • 其主要目的是:让SNARK前端生成仅需做lookup的电路。
  • Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证:
    • 更易于审计单个lookup argument和各种lookup tables,不再需要数千行的硬编码电路。
  • 承认现有的lookup argument方案具有性能瓶颈 但 预测将得到改进:
    • 强调可能需要支持巨大table,如size为 2 128 2^{128} 2128的table。
  • Lasso/Jolt可能可实现该愿景?

多年来,ZKP的核心元素为check:

  • A ∗ B + D = = C A*B+D==C AB+D==C

在构建整个电路过程中,重复运用该check。将这种表示的电路称为R1CS。

但是,对于某些任务,R1CS昂贵得令人望而却步,为此,引入了lookup arguments的大量使用。当前,很多ZKP使用lookup argument + R1CS变种多项式承诺 来构建电路。

仅使用R1CS来构建电路存在一些障碍。为此,人们创建了一些hand tuned circuits,在这些hand tuned circuits中,同时包含了多项式约束和lookup arguments。这些hand tuned circuits是特定的,并不是很容易扩展。

1.1 多项式约束

多项式约束是复杂的。电路实现人员构建大量多项式方程式,整个电路定义为由多项式方程式组成的系统。
对这个“由多项式方程式组成的系统” 的solution,构成了a valid proof。很难对方程组的结果进行推理。目前的形式化验证工具无法求解素数域中的多项式方程。

1.2 Lookup argument

lookup argument为set membership check。lookup argument:

  • 首次用于做高效的big integer arithmetic。
  • 目前还用作VM的控制流
  • 做某些不是snark-friendly的运算
  • 并不是对所有运算都是更高效的
  • 每个lookup会引入一定的prover开销
  • 目前控制使用lookup argument的次数 的原因在于,其对Prover来说是昂贵的。

2. 为何Lookup arguments很好?

2.1 语言

当前的snark friendly语言对于新程序员来说是难学的。其使用了不同于之前范式的素数域和多项式约束。而仅使用lookup arguments的语言可能会更简单。当前的语言擅长做snarks定向计算,但当用于传统计算时要昂贵很多。

而仅有lookup的语言,将:

  • 既擅长做snarks定向计算
  • 也擅长做传统计算

2.2 安全审查

审计人员不再需要取对一组多项式方程式求解。lookup arguments推理起来要简单得多。

如:某电路具有一个ANDgate,有2个输入bit 变量,输出为这2个输入的AND运算结果。

多项式方案为:

(x)(x-1) = 0 
y(y-1) = 0 
x*y = out
return(out)

Lookup方案为:

out = get x,y from AND table
return(out)

其中AND lookup table为:
在这里插入图片描述

由此可知,Lookup方案要简单得多。因此,对于仅有lookup的电路,要更容易找出bug。

2.3 形式化验证

形式化验证工具需对一组多项式方程式求解。现有的形式化验证工具不擅长求解素数域中的多项式方程——这样会引入大量额外工作。

而仅使用lookup argument的话,则可使用现有的形式化验证工具,同时可能可探索一些其它方案。

lookup argument限制了电路中任意point的有限变量集合,使得可能的变量集合由 2 254 2^{254} 2254 限制为了 2 2 2 2 16 2^{16} 216。这样甚至可支持做state space enumeration 来确认 “电路是正确的”。

2.4 信息论对比

为高效将程序描述为电路,需构建一个电路来将“某输入”映射为“正确的输出”。可将“电路”看成是“每个prover time second编码的信息”。这似乎是对比“实现电路的不同方式”的一种好角度。

多项式约束具有有限的degree:

  • 因为degree会影响Prover time。
  • degree会限制可编码的信息。

如degree为5的多项式可将5个输入值 映射为 5个输出值。除非增加degree,否则无法在该多项式中包含更多的值。

很多情况下,这样是ok的,因为是使用多项式约束的structure来做计算。因此,乘法运算对应为多项式运算 A ∗ B = = C A*B==C AB==C,而XOR运算不是,需要编码为keys to values。

Lookup argument可包含更多的信息。之前已限制lookup table size为 2 28 2^{28} 228个元素。但近期研究成果表明,circuit size仅受限于可灵活完成的最大trusted setup——会限制table_size。
Baloo: Nearly Optimal Lookup Arguments中指出:

  • 单个多项式约束中可包含约 5 ∗ 2 254 5*2^{254} 52254位信息。
  • Lookup argument可包含 2 254 ∗ table_size 2^{254}*\text{table\_size} 2254table_size

当使用多项式约束的structure时,多项式约束是很有用的。但随着更大尺寸的table变得可行,这种优势将消失。

3. 结论

若可仅使用lookup argument来高效定义电路,则将由更简单的工具和电路。
这样,lookup argument 将总是比 多项式约束 效率更高。

未来将关注构建以lookup为中心的ZKP工具。

4. 展望

未来工作:

  • 比较现有电路的效率
  • 构建仅有lookup的语言示例
  • 对不同lookup argument效率做对比,并预测改进空间。
  • 寻找lookup argument优于(和劣于)多项式约束的实例:
    • 寻找lookup argument 和 多项式约束 的worst case。
    • 对现有电路进行benchmark,比对效率:
      • lookup argument
      • lookup + polynomial constraints

参考资料

[1] Lookup Singularity
[2] The lookup singularity - how zero-knowledge proofs can be made simpler and easier to review.

Justin Thaler系列博客

  • SNARK Design
  • Rollup项目的SNARK景观
  • SNARK原理示例
  • SNARK性能及安全——Prover篇
  • SNARK性能及安全——Verifier篇
  • sum-check protocol in zkproof
  • sum-check protocol深入研究
  • Lasso、Jolt 以及 Lookup Singularity——Part 1
  • Lasso、Jolt 以及 Lookup Singularity——Part 2

lookup系列博客

  • PLOOKUP
  • PLOOKUP代码解析
  • Efficient polynomial commitment schemes for multiple points and polynomials学习笔记
  • PLONK + PLOOKUP
  • PlonKup: Reconciling PlonK with plookup
  • PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge 学习笔记
  • Plonk代码解析
  • RapidUp: Multi-Domain Permutation Protocol for Lookup Tables学习笔记
  • Lookup argument总览
  • Halo2 学习笔记——设计之Proving system之Lookup argument(1)
  • 多变量lookup argument
  • cq:fast lookup argument
  • Lookup Argument性能优化——Caulk
  • 2023年 ZK Hack以及ZK Summit 亮点记
  • Research Day 2023:Succinct ZKP最新进展
  • Lasso、Jolt 以及 Lookup Singularity——Part 1
  • Lasso、Jolt 以及 Lookup Singularity——Part 2
http://www.dinnco.com/news/12708.html

相关文章:

  • 订做网站策划免费网站推广软件哪个好
  • 优化手机网站兰州网络推广的平台
  • 做网站要多少钱新乡网络营销有什么
  • 做网站 360seo发包技术教程
  • 做外贸需要自己建网站吗百度怎么搜索图片
  • 做医疗竞价网站网络营销软件推广
  • wordpress密码对的登不不了网站优化推广价格
  • 北京响应式h5网站开发怎样做一个自己的网站
  • 江苏瀚和建设网站seo推广怎么学
  • 免费网站搭建系统seo优化的网站
  • 东莞厂房招标平台seo优化什么意思
  • 番禺公司网站建设长沙好的seo外包公司
  • 制作和淘宝商城一样网站合肥seo优化公司
  • 网站建设费用是多少钱哪些广告平台留号码
  • 怎么样网站搜索靠前青岛爱城市网app官方网站
  • 做商品网站如何进行新产品的推广
  • 接做网站的私活怎么报价培训
  • 哪个公司网站设计最好网站友情链接的好处
  • 杭州做家教网站今日头条10大新闻
  • 徐州网站建设4天津百度爱采购
  • 党建网站建设成效阿里指数查询
  • 个人网站 百度收录中国营销型网站有哪些
  • 东莞手机端网络推广seo怎么快速提高排名
  • 珠海网站建设杰作科技seoul是韩国哪个城市
  • 网站在线聊天源代码网站查询关键词排名软件
  • 沈阳制作公司网站外贸网站seo推广教程
  • 东台做淘宝网站百度地图关键词优化
  • 毕业答辩为什么做网站免费发布广告信息平台
  • 商洛免费做网站公司太原网站优化公司
  • 青岛推广网站万能推广app