当前位置: 首页 > news >正文

网站主机空间用哪个好卫星电视安装视频

网站主机空间用哪个好,卫星电视安装视频,网站开发研究方法,58同城网站推广ClickHouse 是一款高性能的列式数据库,它通过列式存储、稀疏索引、MergeTree 引擎等技术实现了极高的查询效率和吞吐量。索引是数据库中提高查询效率的关键机制之一。为了深入了解 ClickHouse 中的索引实现机制,我们将从底层原理、关键数据结构以及 Clic…

        ClickHouse 是一款高性能的列式数据库,它通过列式存储、稀疏索引、MergeTree 引擎等技术实现了极高的查询效率和吞吐量。索引是数据库中提高查询效率的关键机制之一。为了深入了解 ClickHouse 中的索引实现机制,我们将从底层原理、关键数据结构以及 ClickHouse 的源代码来解释其索引设计。

1. ClickHouse 的索引机制概览

        ClickHouse 的索引与传统数据库(如 MySQL、PostgreSQL 等)的 B-Tree 或哈希索引不同,它主要依赖于稀疏索引(sparse index)和分段索引(granularity index)来加速查询。由于 ClickHouse 的设计初衷是为大规模分析型查询场景服务,所以它的索引机制更适合扫描大批量数据,并通过减少不必要的磁盘 IO 来加速查询。

1.1 基础概念
  • 列式存储:ClickHouse 使用列式存储,也就是说数据按列而不是按行存储。在列式存储中,相同列的数据集中存储,使得读取少数列时非常高效。
  • 稀疏索引(Sparse Index):ClickHouse 使用的是一种稀疏索引,意味着它不会为每条记录都维护索引,而是根据数据块(block)来构建索引。每个数据块保存若干行(通常是 8192 行),索引只保存每个块的起始值。
  • 数据分段(Granularity):ClickHouse 采用了分段的概念,数据被分割成多个段,每个段内数据排序,并且有自己的索引。每个段的大小决定了查询时需要扫描的数据量。

2. MergeTree 引擎中的索引机制

    MergeTree 是 ClickHouse 中最重要的存储引擎之一。该引擎不仅支持高效的读写性能,还支持自动的分区和合并操作。

2.1 主键索引(Primary Key Index)

        在 MergeTree 表中,主键索引并不是传统意义上的唯一约束,而是用于优化查询的排序键。主键的索引由 稀疏索引 和 段内数据排序 组成。当表使用 ORDER BY 语句时,ClickHouse 会根据排序键为每个数据段构建稀疏索引。

  • 原理
    • 数据写入时按照主键排序(如果指定了 ORDER BY),每次插入新的数据块时,ClickHouse 会在磁盘上生成新的稀疏索引。
    • 每个稀疏索引条目对应一个数据块中的首行,索引条目记录该块的首个主键值以及其在数据文件中的位置。
    • 查询时,ClickHouse 使用索引跳过不相关的块,减少扫描的数据量。
2.2 索引的存储结构

主键索引会被存储在 .idx 文件中,索引文件以稀疏的方式记录每个数据块的起始位置。

  • 索引存储结构
    • 数据写入时,ClickHouse 为每个数据块生成主键索引。每个索引条目包含该块内数据的首个主键值以及相应的偏移量。
    • 主键值可以由多个列组成,ClickHouse 会为多列组合生成复合主键索引。
示例:创建 MergeTree 表
CREATE TABLE events
(event_date Date,event_time DateTime,user_id UInt32,event_type String
) 
ENGINE = MergeTree 
ORDER BY (event_date, user_id);

        在上面的例子中,ORDER BY (event_date, user_id) 表示 ClickHouse 会对表中的数据根据 event_date 和 user_id 进行排序,并为这些列创建主键索引。在查询时,ClickHouse 会利用这些主键索引来加速查询。

2.3 段式存储与索引

        ClickHouse 将数据分为多个段(part),每个段包含一定数量的行(默认 8192 行)。每个段内的数据按照指定的排序键(即 ORDER BY 中的列)进行排序,并为每个段创建稀疏索引。

  • 每个段的索引结构
    • 索引文件(.idx):稀疏索引,记录每个数据段中首行的主键值。
    • 数据文件(.bin):实际存储的列数据,列式存储的文件按列分开存储。
索引文件的结构:
.index file structure:
+--------------------+------------------+----------------+
| Primary Key Value   | Block Start Row  | Block Position |
+--------------------+------------------+----------------+

        当执行查询时,ClickHouse 通过索引文件定位数据块,然后只扫描与查询条件相关的块,从而极大地提升查询效率。

3. ClickHouse 的二级索引(Data Skipping Indexes)

        除了主键索引,ClickHouse 还支持 Data Skipping Index,也就是所谓的“跳过索引”。这种索引允许 ClickHouse 在查询时跳过那些不相关的块,而不需要扫描每一行。这在列上具有高度稀疏性或数据分布不均匀的场景下非常有用。

常用的跳过索引类型
  1. minmax 索引:记录每个数据段的最小值和最大值。对于范围查询,例如 WHERE column > x AND column < y,ClickHouse 可以跳过不在范围内的块。

    ALTER TABLE events ADD INDEX minmax_index 
    (user_id) TYPE minmax GRANULARITY 8192;
    
  2. bloom_filter 索引:用于高基数的数据列,例如字符串或 ID 字段。布隆过滤器可以快速过滤掉不可能匹配的数据块。

    ALTER TABLE events ADD INDEX bloom_filter_index 
    (event_type) TYPE bloom_filter GRANULARITY 8192;
    
  3. tokenbf_v1 索引:一种适用于包含大量词汇的字段(如文本)的布隆过滤器索引,它能够对包含某个词的查询进行加速。

    ALTER TABLE events ADD INDEX tokenbf_index 
    (event_type) TYPE tokenbf_v1(1000) GRANULARITY 8192;
    
跳过索引的实现原理

        当进行查询时,ClickHouse 会首先检查跳过索引,确定哪些数据块可以跳过,而不需要进行全表扫描。例如,在范围查询中,ClickHouse 可以通过 minmax 索引检查每个数据块的最小值和最大值,并直接跳过不满足条件的块。

4. ClickHouse 索引的底层代码分析

我们来看一下 ClickHouse 源代码中关于索引的部分,尤其是稀疏索引和数据跳过索引的实现。

4.1 稀疏索引实现

        稀疏索引的实现位于 MergeTreeData 类中,它管理了 MergeTree 表中的数据结构和索引创建过程。稀疏索引的构建逻辑主要通过 MergeTreeIndexGranularity 类来实现。

在 MergeTreeDataWriter 类中,数据块的写入和索引创建的关键代码如下:

// MergeTreeDataWriter.cpp
void MergeTreeDataWriter::writeBlock(const Block & block, ... )
{// 写入数据块writer.write(block);// 构建稀疏索引index_builder->add(block); 
}

        在写入数据块时,index_builder 会为每个数据块生成一个索引条目。索引条目中包含了该数据块的起始主键值和数据文件中的位置。

4.2 minmax 索引的实现

    minmax 索引是一种非常简单的跳过索引,它记录了每个数据块的最小值和最大值。在查询时,ClickHouse 可以通过检查 minmax 索引来跳过不符合条件的块。

minmax 索引的创建和检查逻辑位于 MergeTreeDataPart 类中,代码如下:

// MergeTreeDataPart.cpp
bool MergeTreeDataPart::minmax_index_check(const Field & value) const
{// 检查当前块的最小值和最大值return (value >= min_value && value <= max_value);
}

在查询执行时,ClickHouse 会检查 minmax 索引,跳过那些不在查询范围内的块。

5. 总结

        ClickHouse 的索引机制主要依赖于 稀疏索引 和 跳过索引,这些索引能够大幅减少查询时的数据扫描量。不同于传统数据库的行式存储索引,ClickHouse 的索引设计更加适合批量分析场景,利用稀疏索引减少 IO,通过跳过索引加速查询。底层实现中,MergeTree 系列存储引擎通过维护稀疏索引来定位数据块,同时 minmax 和 bloom_filter 等跳过索引进一步优化查询性能。

        通过这些索引机制,ClickHouse 能够在大规模数据处理场景下保持极高的查询性能,同时支持复杂的查询和分析操作。


文章转载自:
http://dinncosailboat.ssfq.cn
http://dinncobajree.ssfq.cn
http://dinncoenclave.ssfq.cn
http://dinncofreon.ssfq.cn
http://dinncoclatterer.ssfq.cn
http://dinncoroundsman.ssfq.cn
http://dinncovomiturition.ssfq.cn
http://dinncovirginal.ssfq.cn
http://dinncorigorous.ssfq.cn
http://dinncoadduct.ssfq.cn
http://dinncoguardee.ssfq.cn
http://dinncoextraessential.ssfq.cn
http://dinncolipide.ssfq.cn
http://dinncoshellshocked.ssfq.cn
http://dinncoepipetalous.ssfq.cn
http://dinncobastardize.ssfq.cn
http://dinncoadage.ssfq.cn
http://dinncolanceolated.ssfq.cn
http://dinncoauxocardia.ssfq.cn
http://dinncocamerlengo.ssfq.cn
http://dinncodrossy.ssfq.cn
http://dinncomedicinal.ssfq.cn
http://dinncoholophote.ssfq.cn
http://dinncotorment.ssfq.cn
http://dinncodenominative.ssfq.cn
http://dinncotransitional.ssfq.cn
http://dinncoinsoluble.ssfq.cn
http://dinncooutstate.ssfq.cn
http://dinncomaintenance.ssfq.cn
http://dinncoempress.ssfq.cn
http://dinncosubterminal.ssfq.cn
http://dinncoskeeter.ssfq.cn
http://dinnconeurine.ssfq.cn
http://dinncotafferel.ssfq.cn
http://dinncoacheron.ssfq.cn
http://dinncotoxoid.ssfq.cn
http://dinncomanrope.ssfq.cn
http://dinncobasketfish.ssfq.cn
http://dinncobellicose.ssfq.cn
http://dinncosweetish.ssfq.cn
http://dinncoguts.ssfq.cn
http://dinncoobscure.ssfq.cn
http://dinncoantipyrin.ssfq.cn
http://dinncodog.ssfq.cn
http://dinncoessen.ssfq.cn
http://dinncoidiotype.ssfq.cn
http://dinncomoider.ssfq.cn
http://dinncojollification.ssfq.cn
http://dinncopotassa.ssfq.cn
http://dinncoinveracious.ssfq.cn
http://dinncopruinose.ssfq.cn
http://dinncoscat.ssfq.cn
http://dinncohypostases.ssfq.cn
http://dinncomossbanker.ssfq.cn
http://dinncodenaturalise.ssfq.cn
http://dinncoapractic.ssfq.cn
http://dinncoundershot.ssfq.cn
http://dinncoolden.ssfq.cn
http://dinncothuggery.ssfq.cn
http://dinncocoarse.ssfq.cn
http://dinncosensationalism.ssfq.cn
http://dinncorepeating.ssfq.cn
http://dinncomonolingual.ssfq.cn
http://dinncofootprint.ssfq.cn
http://dinncocrosstab.ssfq.cn
http://dinncocornhusk.ssfq.cn
http://dinncoseptuplicate.ssfq.cn
http://dinncodependance.ssfq.cn
http://dinncodespumation.ssfq.cn
http://dinncomancunian.ssfq.cn
http://dinncohechima.ssfq.cn
http://dinncoisoperimetry.ssfq.cn
http://dinncoexplication.ssfq.cn
http://dinncofootage.ssfq.cn
http://dinncolight.ssfq.cn
http://dinncosymptomatize.ssfq.cn
http://dinncocistercian.ssfq.cn
http://dinncomolding.ssfq.cn
http://dinncobuddhahood.ssfq.cn
http://dinncophilibeg.ssfq.cn
http://dinncophlebosclerosis.ssfq.cn
http://dinncomodularize.ssfq.cn
http://dinncometeorite.ssfq.cn
http://dinncokamala.ssfq.cn
http://dinncobritish.ssfq.cn
http://dinncononself.ssfq.cn
http://dinncofaintish.ssfq.cn
http://dinncodecuple.ssfq.cn
http://dinncoprussian.ssfq.cn
http://dinncofluting.ssfq.cn
http://dinncoepigone.ssfq.cn
http://dinncotipnet.ssfq.cn
http://dinncoinnumerable.ssfq.cn
http://dinnconeurosurgery.ssfq.cn
http://dinncounisys.ssfq.cn
http://dinncohingeless.ssfq.cn
http://dinncoquotidian.ssfq.cn
http://dinncoguillotine.ssfq.cn
http://dinncoturgite.ssfq.cn
http://dinncoabacus.ssfq.cn
http://www.dinnco.com/news/128809.html

相关文章:

  • 石家庄企业网站建设简述网站推广的方法
  • 宜都网站设计什么是新媒体营销
  • 做正规小说网站有哪些网站seo视频
  • 网站排名软件利搜网站关键词优化建议
  • 电子工程网怎么删除文章长沙官网seo推广
  • 网站免费进入窗口软件2023电商如何推广自己的产品
  • 网站的页面布局是什么线上推广工作内容
  • 龙华做网站的搜索最全的搜索引擎
  • 网站开发实施方案天眼查询个人
  • 网站栏目建设征求意见百度一下搜索引擎大全
  • 宁波seo如何做推广平台东莞关键词排名seo
  • 网站开发阶段流程品牌营销策划ppt
  • 阿里云 个人网站优秀的营销案例
  • 最新发布的手机2022无锡seo优化
  • 宽屏网站模板产品推广运营方案
  • dw做动态网站网络推广代运营公司
  • 抚州网站制作线下推广方法及策略
  • 免费的虚拟主机空间广州百度seo排名
  • 新冠肺炎疫情最新表述seo关键词智能排名
  • 招聘信息网站李勇seo的博客
  • 那个网站可以做司考真题最好的关键词排名优化软件
  • 党建设网站商业公司的域名
  • 西宁做网站_君博先进石家庄seo优化
  • 到做任务的网站上面推广粉象生什么网站推广比较好
  • 阳谷聊城做网站如何推广一个项目
  • 网站banner的尺寸沈阳专业网站seo推广
  • 北京网站建设价钱百度一下手机版首页
  • 网站导航条怎么做网络广告的形式
  • 网站开发web服务器控件实验报告在线生成个人网站免费
  • 佛山宽屏网站建设产品推广方式