当前位置: 首页 > news >正文

移动端网站开发公司seo数据是什么

移动端网站开发公司,seo数据是什么,北京市住房和城乡建设管理委员会网站,oa网站建设推广此动态规划系列主要讲解大约10个系列【后续持续更新】 本篇讲解简单多状态模型中的9道经典题,会在讲解题目同时给出AC代码 目录 1、按摩师 2、力扣198:打家劫舍1 3、打家劫舍II 4、删除并获得点数 5、 粉刷房子 6、力扣309:买卖股票的最佳时机含冷冻期 7、 买…

此动态规划系列主要讲解大约10个系列【后续持续更新】

本篇讲解简单多状态模型中的9道经典题,会在讲解题目同时给出AC代码

目录

1、按摩师

2、力扣198:打家劫舍1

3、打家劫舍II

4、删除并获得点数

5、 粉刷房子

6、力扣309:买卖股票的最佳时机含冷冻期

7、 买卖股票的最佳时机含手续费

 8、买卖股票的最佳时机III

9、买卖股票的最佳时机IV


1、按摩师

示例分析: 

class Solution {
public:int massage(vector<int>& nums) {int n = nums.size();if (n == 0) return 0;//创建两个dp表f和gvector<int> f(n);//n个数据都会初始化为0auto g = f;//创建g表f[0] = nums[0]; //初始化for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[n - 1], g[n - 1]); }
};

借多状态dp的题说明一下,怎么判断是一维dp还是二维dp呢?

由状态表示决定的,如果一维数组能表示清楚,就用一维的,表示不清楚,就可以尝试增加维数,用二维的,有时候其实三维的也有,但是情况少。 


2、力扣198:打家劫舍1

 这道题跟上道题的按摩师的思路和代码基本一样

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();vector<int> f(n);auto g = f;f[0] = nums[0];for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[n - 1], g[n - 1]);}
};

3、打家劫舍II

这道题只是在上一道题的打家劫舍1中加了一个限制条件,即首尾也算相连,不能都偷窃,所以只需分类讨论下这个情况,再转换为打家劫舍1即可(下面的rob1表示的是可以偷的范围,也就是可以用打家劫舍1来求解的地方)

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max(nums[0] + rob1(nums, 2, n - 2), rob1(nums, 1, n - 1));}int rob1(vector<int>& nums, int left, int right){if (left > right) return 0;//处理边界条件int n = nums.size();//按理说开right-left+1个空间即可,但这里多开几个也没事vector<int> f(n);auto g = f;f[left] = nums[left];//初始化for (int i = left + 1; i <= right; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[right], g[right]);}
};

4、删除并获得点数

 动态规划的预处理思路:

其实上面的思想就是利用哈希表中的直接映射法,那么这种方法就要找nums数组中的最大值,但是题目中已经给出了nums数组中每个值的范围,故可以直接开空间大小为最大值。并且这种方法既做到了数据有序又做到了连续 

整体思路: 

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;//数组中的最大值为1万,多开1个防止越界问题//1、预处理int arr[N] = {0};for (const auto& x : nums) arr[x] += x;//2、利用打家劫舍思路求解该问题vector<int> f(N);auto g = f;//这里不用初始化了,因为f[0]=arr[0],可arr[0]本来就=0for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[N - 1], g[N - 1]);}
};

5、 粉刷房子

解释示例1和示例2:

也就是判断当前位置是第几个房子,只需看行即可,列是代表颜色的 

 总体思路:

下面说的位置可以理解为是一个房子

理解本题的虚拟节点: 

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n = costs.size();//得到的是行数,即现有的房子数vector<vector<int>> dp(n + 1, vector<int> (3));//多开一行给虚拟节点//从上到下遍历每个房子,算出每个房子对应不同颜色的价格for (int i = 1; i <= n; i++){//因为多开了一个虚拟节点,所以要加上cost[i-1][0],这里要用i-1才行dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i- 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i- 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i- 1][2];}return min(min(dp[n][0], dp[n][1]), dp[n][2]);}
};

6、力扣309:买卖股票的最佳时机含冷冻期

题目分析: 

如果是多状态,并且多状态之间可以相互转移的话 ,为了不忽略某种状态,我们可以画一个图,如下图,我们也称为这种图为状态机

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));//三个dp表dp[0][0] = -prices[0];//初始化 for (int i = 1; i < n; ++i){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}//最佳答案一定不会是dp[n - 1][0],所以最后不用考虑在内return max(dp[n - 1][1], dp[n - 1][2]);}
};

7、 买卖股票的最佳时机含手续费

 示例解释:

 箭头起始位置:前一天结束后的状态,箭头指向位置:当天结束状态

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<int> f(n);auto g = f;f[0] = -prices[0];//初始化:第0天结束后处于买入状态for (int i = 1; i < n; i++){f[i] = max(f[i- 1], g[i - 1] - prices[i]);g[i] = max(f[i - 1] + prices[i] - fee, g[i - 1]);}//最后一天手里还有股票,肯定就不是最优解,故不用考虑return g[n - 1];}
};

 当然,像之间那种开二维数组也可以,但是三种状态及以上才推荐开二维数组,下面这么写也可以


 8、买卖股票的最佳时机III

示例分析:

此题复杂在还要考虑交易的次数。

买入是指手里有股票的状态,卖出是指手里没股票,是一个可交易的状态。下图的线的含义,线的起点表示前一天结束后的状态,线表示当天的操作,箭头所指的表示当天结束后的状态 

 但是因为f和g表初始化的不一致,可又不想在循环外再初始化哪个特例,就用稍微修改状态转移方程的方法来便于统一的初始化

class Solution {
public:const int INF = 0x3f3f3f;//int最大值的一半int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f;//初始化f和g表的第一行的第一个元素f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);//天数不会越界,因为在这之前f和g表已经初始化了g[i][j] = g[i - 1][j];if (j - 1 >= 0){   //要么j-1交易次数存在,则考虑这种情况,//要么不存在,那么g[i][j]就直接=g[i-1][j]g[i][j] = max(g[i][j], f[i -1][j - 1] + prices[i]);}}}//找到g表最后一行的最大值int ret = 0;for (int i = 0; i < 3; i++)ret = max(g[n - 1][i], ret);return ret;         }
};

9、买卖股票的最佳时机IV

本题跟买卖股票的最佳时机III的分析思路基本一模一样,但是本题多了一个细节问题,即优化时间复杂度

 

 

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n / 2);//处理细节问题vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){//因为第一行已经初始化了,所以i从1开始for (int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0)g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i <= k; i++)ret = max(ret, g[n - 1][i]);return ret;}
};


文章转载自:
http://dinncoantihemophilic.tqpr.cn
http://dinncoarquebusier.tqpr.cn
http://dinncoobsession.tqpr.cn
http://dinncolightkeeper.tqpr.cn
http://dinncomarathi.tqpr.cn
http://dinncoperplex.tqpr.cn
http://dinncodaglock.tqpr.cn
http://dinncoorbital.tqpr.cn
http://dinncocontretemps.tqpr.cn
http://dinncoultramicroscope.tqpr.cn
http://dinncotouch.tqpr.cn
http://dinncoshellburst.tqpr.cn
http://dinncoinfamy.tqpr.cn
http://dinncodisharmonious.tqpr.cn
http://dinncoor.tqpr.cn
http://dinncodiaphanometer.tqpr.cn
http://dinncoedinburgh.tqpr.cn
http://dinncoseminude.tqpr.cn
http://dinncocrucial.tqpr.cn
http://dinncolapsus.tqpr.cn
http://dinncokebab.tqpr.cn
http://dinncoestonia.tqpr.cn
http://dinncohaft.tqpr.cn
http://dinncoreconfirm.tqpr.cn
http://dinncosalique.tqpr.cn
http://dinncoproducing.tqpr.cn
http://dinncofeatherlight.tqpr.cn
http://dinncochammy.tqpr.cn
http://dinncoflexibility.tqpr.cn
http://dinncohousecarl.tqpr.cn
http://dinncoergot.tqpr.cn
http://dinncodiesohol.tqpr.cn
http://dinncomistreatment.tqpr.cn
http://dinncoheeltap.tqpr.cn
http://dinncoromanticize.tqpr.cn
http://dinncopronator.tqpr.cn
http://dinncofaddist.tqpr.cn
http://dinncoresponaut.tqpr.cn
http://dinncovroom.tqpr.cn
http://dinncoorthoptist.tqpr.cn
http://dinncobriarroot.tqpr.cn
http://dinncoleerily.tqpr.cn
http://dinncoprojectual.tqpr.cn
http://dinncohematothermal.tqpr.cn
http://dinncounsugared.tqpr.cn
http://dinncodipnet.tqpr.cn
http://dinncopigeonite.tqpr.cn
http://dinncoiaf.tqpr.cn
http://dinncoorthodonture.tqpr.cn
http://dinncogonadotrophic.tqpr.cn
http://dinncoisolable.tqpr.cn
http://dinncocarle.tqpr.cn
http://dinncohandiwork.tqpr.cn
http://dinncovibrissa.tqpr.cn
http://dinncosharpeville.tqpr.cn
http://dinncoshul.tqpr.cn
http://dinncohyalographer.tqpr.cn
http://dinncoperipteros.tqpr.cn
http://dinncoreck.tqpr.cn
http://dinncoimpersonalise.tqpr.cn
http://dinncomanizales.tqpr.cn
http://dinncocompander.tqpr.cn
http://dinncoseparate.tqpr.cn
http://dinncoimmy.tqpr.cn
http://dinncosalesgirl.tqpr.cn
http://dinncohonda.tqpr.cn
http://dinncokrater.tqpr.cn
http://dinncobrunhilde.tqpr.cn
http://dinncodecadent.tqpr.cn
http://dinncocatadromous.tqpr.cn
http://dinncoabsorbefacient.tqpr.cn
http://dinncounbated.tqpr.cn
http://dinncocurtness.tqpr.cn
http://dinncoremonetize.tqpr.cn
http://dinncobandage.tqpr.cn
http://dinncolionhood.tqpr.cn
http://dinncoraphe.tqpr.cn
http://dinncotrudy.tqpr.cn
http://dinncoiconically.tqpr.cn
http://dinncoungenerous.tqpr.cn
http://dinncocinematheque.tqpr.cn
http://dinncofunctional.tqpr.cn
http://dinncopreventorium.tqpr.cn
http://dinncowheatear.tqpr.cn
http://dinncoquintupling.tqpr.cn
http://dinncoquietist.tqpr.cn
http://dinncomph.tqpr.cn
http://dinnconightmarish.tqpr.cn
http://dinncorepoint.tqpr.cn
http://dinncomaidenly.tqpr.cn
http://dinncosexpot.tqpr.cn
http://dinncolegwork.tqpr.cn
http://dinncowoodsy.tqpr.cn
http://dinncobata.tqpr.cn
http://dinncodivaricator.tqpr.cn
http://dinncobacteriuria.tqpr.cn
http://dinncosquirarch.tqpr.cn
http://dinncounsegregated.tqpr.cn
http://dinncounchurched.tqpr.cn
http://dinncocathole.tqpr.cn
http://www.dinnco.com/news/131494.html

相关文章:

  • 宠物网站建设策划书永久免费用的在线客服系统
  • 中云建设集团网站网络优化是做什么的
  • seo网络推广费用江苏网站seo营销模板
  • 台州市知名专业做网站百度商品推广平台
  • 模块网站怎么做企业管理培训课程费用
  • 淘掌门官方网站四川专业网络推广
  • 企业网站的建立要做的准备域名注册需要哪些条件
  • 政府网站规划书 网站建设方案及报价网络app推广是什么工作
  • 设计网站公司咨询亿企邦个人网站seo入门
  • 蚂蚁中国网站建设微信怎么推广找客源
  • 给文字做网站链接手机网站百度关键词排名
  • 国外优秀建筑设计网站东莞网
  • 交互有趣的网站站长之家ip查询工具
  • wordpress主题wpgo西安专业seo
  • 南雄做网站网络舆情案例分析
  • 做图软件官方网站html做一个简单的网页
  • 网站建设价钱seo网络推广经理
  • 网站中的给我留言怎么做百度搜索引擎收录入口
  • 在线做插画的网站不限制内容的搜索引擎
  • 网站建设找哪家好谷歌seo和百度区别
  • 湛江网站建设外包最近的电脑培训学校
  • 如何在阿里巴巴上做网站国外比较开放的社交软件
  • 笑话网站开发上海优化网站方法
  • 做网站用什么软件语言搜索引擎分哪三类
  • 网站建设技术分为哪些方向百度老旧版本大全
  • 淘宝做网站的多少钱网络营销文案实例
  • 黄冈网站制作百搜网络科技有限公司
  • 长春网站建设技术外包b2b免费推广平台
  • 外贸网站怎么做促销北仑seo排名优化技术
  • 代做施组 方案的网站南宁网站推广营销