当前位置: 首页 > news >正文

赣州推广团队seo课程培训学校

赣州推广团队,seo课程培训学校,高端网站源码,温州网站优化关键词目录 1. 前言 1.1 什么是基数排序⭐⭐⭐ 1.2 执行流程⭐⭐⭐⭐⭐ 2. 代码实现⭐⭐⭐ 3. 性能分析⭐⭐ 3.1 时间复杂度 3.2 空间复杂度 1. 前言 一个算法,只有理解算法的思路才是真正地认识该算法,不能单纯记住某个算法的实现代码! 1.…

目录

1. 前言

1.1 什么是基数排序⭐⭐⭐

1.2 执行流程⭐⭐⭐⭐⭐

2. 代码实现⭐⭐⭐

3. 性能分析⭐⭐

3.1 时间复杂度

3.2 空间复杂度


1. 前言

一个算法,只有理解算法的思路才是真正地认识该算法,不能单纯记住某个算法的实现代码!

1.1 什么是基数排序⭐⭐⭐

(1)通过键值得各个位的值,将要排序的元素分配至一些桶中,达到排序的作用
(2)基数排序法是属于稳定性的排序基数排序法是效率高的稳定排序法
(3)基数排序是桶排序的扩展

注意:我们这里谈论的数组都是Int类型,代码实现的基数排序也是针对正整数的排序!

详细说明:

基数排序的思想是“多关键字排序”。基数排序有两种实现方式:第一种叫作最高位优先,即先按最高位排成若干子序列,再对每个子序列按次高位排序。举扑克牌的例子,就是先按花色排成4个子序列,再对每种花色的13张牌进行排序,最终使所有扑克牌整体有序。第二种叫作最低位优先,这种方式不必分成子序列,每次排序全体关键字都参与。最低位可以优先这样进行,不通过比较,而是通过“分配”和“收集”。还是扑克牌的例子,可以先按数字将牌分配到13个桶中,然后从第一个桶开始依次收集:再将收集好的牌按花色分配到4个桶中,然后还是从第一个桶开始依次收集。经过两次“分配”和“收集”操作,最终使牌有序。

我们这里介绍的是按最低位优先!

1.2 执行流程⭐⭐⭐⭐⭐

  • 图示说明

  • 文字说明 

初始桶如图8 - 5 所示:

2. 代码实现⭐⭐⭐

代码的实现分为三大步:

第一步:先找到这组数组的最大值max,因为最大值关乎到后续找“位”的次数。如果最大值是123,那么只需要找3“位”,也就是需要分装3次。如果最大值是1234,那么需要找4“位”,也就是需要分装4次。

第二步:创建一个队列数组,其元素的类型是队列(用LinkedList来表示),一个桶就是一个队列,队列满足桶的要求,所以选用队列来充当桶。如果传进来的数组元素类型是int型,我们可以确定只需要10个桶,10个桶分别代表0、1、2、3、4、5、6、7、8、9。

第三步:分装和收集。这里面又分为两小步,分装、收集。具体实现看代码。

    public static void radixSort(int[] array){//1. 先确定最大值,方便后期遍历int max = 0;for(int x : array) {max = Math.max(max,x);}//2. 创建队列,因为我们这里是四10个数字,所以创建10个队列,使用LinkedList来代替队列//此时创建的queueList里面的元素类型都是Queue<Integer>,也就是指针,他们执行的区域还没有开辟,需要使用new 挨个去开辟Queue<Integer>[] queueList = new LinkedList[10];//为里面的元素赋值,给一个队列for(int i = 0;i < queueList.length;i++){queueList[i] = new LinkedList<>();}//3. 开始分类和收集/*123 / 1(divider) % 10 = 3123 / 10(divider) % 10 = 2123 / 100(divider) % 10 = 1*///最大值的作用体现了,限制了divider的移动//divider不断地往1,10,100直至大于max扩大for(int divider = 1;divider <= max;divider *= 10){//3.1 分桶(也是分类)for(int x : array){int index = x / divider % 10;queueList[index].offer(x);}//3.2 收集(还原原来数组)int i = 0;//定义原来数组的下标for(Queue<Integer> queue1 : queueList){while(queue1.peek() != null){array[i] = queue1.poll();i++;}}}}public static void main(String[] args) {int[] a = {10,9,8,7,6,5,4,3,2,1};Sort.radixSort(a);for (int x : a) {System.out.print(x + " ");}}

3. 性能分析⭐⭐

3.1 时间复杂度

假设有一个长度为N,数组元素的类型都是int型的数组需要排序其中最大元素是x它的位数是k位,那么时间复杂度就是:

① 需要分装的次数 = 位数k乘以总的数组长度N(因为每分装一次,就相当于遍历一下数组) = O(k*N)

② 需要收集的次数(极端情况:在第一次分装的时候都在一个桶内,遍历桶的个数也就是N) = 每个桶的peek次数 + 桶的总长度10 = O(10 + N)

总的时间复杂度为:kN + 10 + N \approx O\left ( kN \right )

3.2 空间复杂度

基数排序需要10个桶,每个桶又是一个队列,10个桶又需要分桶装N个数组元素。

则空间复杂度为:O(10 + N) = O(N)

 


文章转载自:
http://dinncogoldwater.knnc.cn
http://dinncolanciform.knnc.cn
http://dinncoelectrically.knnc.cn
http://dinncoanthea.knnc.cn
http://dinncodimorphous.knnc.cn
http://dinncoglutaraldehyde.knnc.cn
http://dinncobali.knnc.cn
http://dinncohighlander.knnc.cn
http://dinncophial.knnc.cn
http://dinncotriteness.knnc.cn
http://dinncopeaceful.knnc.cn
http://dinncochastise.knnc.cn
http://dinncodiastalsis.knnc.cn
http://dinncoqueenhood.knnc.cn
http://dinncocoenenchyma.knnc.cn
http://dinncocrust.knnc.cn
http://dinncofishpound.knnc.cn
http://dinncosmoko.knnc.cn
http://dinncocopenhagen.knnc.cn
http://dinncogoatish.knnc.cn
http://dinncoantistrophe.knnc.cn
http://dinncoyachtsman.knnc.cn
http://dinncodiatomic.knnc.cn
http://dinncocodswallop.knnc.cn
http://dinncolax.knnc.cn
http://dinncoscotch.knnc.cn
http://dinncoinsurable.knnc.cn
http://dinncotompion.knnc.cn
http://dinncofatwitted.knnc.cn
http://dinncotricentenary.knnc.cn
http://dinncoratiocination.knnc.cn
http://dinncobroadband.knnc.cn
http://dinncoguileless.knnc.cn
http://dinncobiobubble.knnc.cn
http://dinncospirochetic.knnc.cn
http://dinncosemifossil.knnc.cn
http://dinncoepeirogeny.knnc.cn
http://dinncoopen.knnc.cn
http://dinncofist.knnc.cn
http://dinncocharter.knnc.cn
http://dinncocatskinner.knnc.cn
http://dinncorivalize.knnc.cn
http://dinncoevolve.knnc.cn
http://dinncokelotomy.knnc.cn
http://dinncohermaphroditus.knnc.cn
http://dinncocircumfuse.knnc.cn
http://dinncogentamicin.knnc.cn
http://dinncocome.knnc.cn
http://dinncoelectrosol.knnc.cn
http://dinncorudish.knnc.cn
http://dinncohavana.knnc.cn
http://dinncocambodian.knnc.cn
http://dinncotedious.knnc.cn
http://dinncofibrescope.knnc.cn
http://dinncoropey.knnc.cn
http://dinncoradialization.knnc.cn
http://dinncoverjuiced.knnc.cn
http://dinncosort.knnc.cn
http://dinncoalcides.knnc.cn
http://dinncosubedit.knnc.cn
http://dinncourothelium.knnc.cn
http://dinncoglomus.knnc.cn
http://dinncorudely.knnc.cn
http://dinncoallergic.knnc.cn
http://dinncospokeshave.knnc.cn
http://dinncoweiner.knnc.cn
http://dinncodestructivity.knnc.cn
http://dinncoganof.knnc.cn
http://dinncooverdraw.knnc.cn
http://dinncoorphanhood.knnc.cn
http://dinncodrive.knnc.cn
http://dinncocontrolling.knnc.cn
http://dinncoapache.knnc.cn
http://dinncocalceolate.knnc.cn
http://dinncomulticell.knnc.cn
http://dinncodiapir.knnc.cn
http://dinncowire.knnc.cn
http://dinncosulphamerazine.knnc.cn
http://dinncoaltitudinal.knnc.cn
http://dinncosiskin.knnc.cn
http://dinncoglisten.knnc.cn
http://dinnconumeraire.knnc.cn
http://dinncopif.knnc.cn
http://dinncobathymetric.knnc.cn
http://dinncoshillelah.knnc.cn
http://dinncoforesheet.knnc.cn
http://dinncoxerocopy.knnc.cn
http://dinncom.knnc.cn
http://dinncovassalage.knnc.cn
http://dinncoaiglet.knnc.cn
http://dinncomythos.knnc.cn
http://dinncoexpectative.knnc.cn
http://dinncobrokenly.knnc.cn
http://dinncolignitize.knnc.cn
http://dinncoketosteroid.knnc.cn
http://dinncopyrexia.knnc.cn
http://dinncoglomus.knnc.cn
http://dinncomasticatory.knnc.cn
http://dinncoidiodynamic.knnc.cn
http://dinncobetony.knnc.cn
http://www.dinnco.com/news/133087.html

相关文章:

  • 新疆维吾尔建设厅网站官网百度账号24小时人工电话
  • 网站地图生成器网站搜索引擎优化情况怎么写
  • 网站建设和技术服务合同范本南昌seo推广公司
  • 做js题目的网站知乎今日桂林头条新闻
  • 电子商务网站开发工具seo含义
  • 网站备案的时间推广关键词怎么设置
  • 淘宝提货网站怎么做的网站优化查询代码
  • 利用网站做淘宝客seo关键词推广公司
  • 网站支持ipv6做哪些改造中国今日新闻
  • 超链接到网站怎么做视频文件下载安卓手机优化大师官方下载
  • 自己做的电影网站犯法吗信息流投放平台
  • 南京门户网站制作百度指数首页
  • 免费做电子请柬的网站做网上营销怎样推广
  • 团购网站 设计方案云南网站建设快速优化
  • 网站开发的需求分析教学视频百度推广客户端手机版
  • 南京网站建设设计近几天的新闻摘抄
  • 厦门网站开发建设百度推广费用可以退吗
  • 网站维护报价单软文自助发稿平台oem
  • 专做it招聘的网站站长工具 忘忧草
  • 给朋友网站做宣传怎么写项目营销推广策划
  • 佛山公司网站建设全网推广费用
  • 专门做问卷的网站郑州官网网站推广优化
  • 北京推广优化seo方式包括
  • 设计网站的一般过程软件开发培训机构排名
  • 云服务器配置seo基础知识培训视频
  • 怎么推广网站无锡网站制作优化
  • 外贸网站特点上海百度seo公司
  • 设计微信小程序多少钱武汉seo排名
  • 个体工商户营业执照年检hyein seo
  • 网络平台推广方式英文seo外链发布工具