当前位置: 首页 > news >正文

骗子会利用钓鱼网站做啥app推广一手单平台

骗子会利用钓鱼网站做啥,app推广一手单平台,有了域名公司网站怎么建设,如何建设国际网站首页让大模型自己生成prompt,生成提示(prompt)存在两种不同的操作方式。第一种方式是在文本空间中进行,这种提示以离散的文本形式存在。第二种方式是将提示抽象成一个向量,在特征空间中进行操作,这种提示是抽象…

让大模型自己生成prompt,生成提示(prompt)存在两种不同的操作方式。第一种方式是在文本空间中进行,这种提示以离散的文本形式存在。第二种方式是将提示抽象成一个向量,在特征空间中进行操作,这种提示是抽象的、连续的。

APE

论文地址:https://arxiv.org/abs/2211.01910

候选prompt自动生成

简单来说就是给答案,让LLM去反推prompt长什么样。典型例子如下:

由于LLM大多采用decoder-only结构,所以把需要生成的内容放在最后肯定是最合理的,作者管这种生成方法叫forward generation template。这个template看起来是作者自己设计的,这个template只是一个candidate生成器,评分的时候用的是生成的candidate,和这儿的template无关。

相应的,另一种叫reverse generation template,就是把需要生成的prompt放到文章中的任意位置。

最后一种是根据task不同来制定相应的模板,比如有的task就固定是某种问答结构,这时候你需要和task align一下。

所以这样我们就完成了prompt的自动生成。这里的prompt可以生成很多次(采样),从而生成一个候选集。

评估prompt分数

生成完了候选prompt,接下来就需要想个方法评价哪个prompt比较好。

我们需要先从训练集里取一个子集(就是取一些有gt的训练数据),然后把上一步生成的prompt丢进去。由于我们是有gt的,所以可以比对模型生成gt的概率,生成gt的概率越大说明prompt越好,从某种程度上说和PPL是差不多的东西。

重新采样

经过上述评估之后我们可以留下那些评分高的prompt(由你自己设置top k%),然后把这些好的prompt再送进LLM,让它生成意思相近的prompt,这样相当于再次扩充了候选集,之后可以再进行一轮评估。如此反复迭代即可。

APE针对的场景主要是那种短prompt+固定小任务。比如说我固定了我的任务是“找反义词”,那么我只需要用一些数据去找prompt,这个prompt固定下来之后就不用动了。

OPRO

论文地址:https://arxiv.org/pdf/2309.03409.pdf

在OPRO框架中,有两个主要的大型语言模型(LLM):一个担任评分者(scorer),负责对提示进行评分;另一个则作为优化器(optimizer),根据给定的提示模板来生成新的提示。

首先,我们向优化器提供一个问题描述(用紫色字体表示,如“做数学题”),以及一些已经过评分的提示和它们的分数(用蓝色字体表示,即这些提示已经被评分者评估过,以判断其准确性)。此外,还会提供一些额外的指令(用橙色字体表示)。

接下来,优化器的任务是根据问题描述和已评分的提示,生成一些新的提示。这些新生成的提示应当旨在获得尽可能高的分数。一旦生成了新的提示并获得了它们的分数,我们就会将这些新的提示-分数对加入到之前的蓝色字体部分。如果存在长度限制,我们可能会移除一些分数较低的提示-分数对,以保持提示集的精简和高效。

INSTINCT

如何给ChatGPT正确的prompt?

在强化学习中,我们面临着exploration-exploitation dilemma。想象一下,你想要出售一台二手电脑,你去了市场,第一个人出价50元,你可以选择立即卖给他(exploitation利用),但如果你认为价格不够理想,你可以选择继续寻找下一个买家(exploration探索)。然而,一旦你决定继续寻找,你就不能回头了。下一个买家的出价可能低于50元,也可能高于50元,这就是探索与利用之间的dilemma两难选择,也被称为bandit问题。通过bandit算法,你可以做出“某种选择”。

这个例子虽然简单,但在实际的强化学习场景中,搜索空间可能非常庞大(比如你有100件商品要卖,每件商品都有100个潜在的买家),在这种情况下,遍历整个搜索空间是不切实际的。为了克服这个难题,研究者们提出了一系列专门的算法,例如INSTINCT中采用的NeuralUCB算法,它就是一种bandit问题的算法。

迭代流程

INSTINCT的何改

INSTINCT的改进主要体现在两个方面:首先是提示生成的方式,其次是迭代逻辑的优化。

在提示生成方面,APE采用的传统方法是给定一个模板后生成候选提示;OPRO的提示生成方式本质上相似,但采用了更先进的生成技术(APE更像是随机抽样,而OPRO则通过不断更新条件来进行抽样)。INSTINCT则采用了全新的方法,它通过在隐空间中生成软提示(soft prompt)来得到所需的提示。这种方法的巧妙之处在于,尽管最终得到的提示是离散的,但在操作过程中却是在连续的提示空间中进行,这使得许多优化变得可能。

在迭代逻辑方面,APE的方法相对简单,它直接利用大型语言模型(LLM)根据现有提示生成语义相似的提示,而且这一步骤是可选的。OPRO的迭代方法更为先进,它提供了大量示例和评分;但是,将LLM作为优化器的方法似乎缺乏逻辑依据。

INSTINCT的迭代逻辑则更加现代化,它采用了NeuralUCB算法来迭代优化软提示,从而控制真实提示的生成。换句话说,在第一步训练的评分网络中,实际上蕴含了判断“哪个提示更好”的知识,然后通过NeuralUCB算法利用这些知识寻找“可能更好的提示”。如果找到了更好的提示,那自然是最理想的结果;即使没有找到,这也相当于对训练集进行了一次采样。

总的来说,INSTINCT的方法在技术上比前两者更为优雅,而且在结果上也表现得更好。


文章转载自:
http://dinnconaugahyde.tqpr.cn
http://dinncocomorin.tqpr.cn
http://dinncoimbecility.tqpr.cn
http://dinncobetimes.tqpr.cn
http://dinncoserioso.tqpr.cn
http://dinncorecalcitrancy.tqpr.cn
http://dinncoinvidiousness.tqpr.cn
http://dinncodithering.tqpr.cn
http://dinncouniate.tqpr.cn
http://dinncofraise.tqpr.cn
http://dinncobacklot.tqpr.cn
http://dinncoprotective.tqpr.cn
http://dinncodistraught.tqpr.cn
http://dinncowoald.tqpr.cn
http://dinncoraptatorial.tqpr.cn
http://dinncocrissa.tqpr.cn
http://dinncolineprinter.tqpr.cn
http://dinncolifer.tqpr.cn
http://dinncobrake.tqpr.cn
http://dinncodemographic.tqpr.cn
http://dinncowindhoek.tqpr.cn
http://dinncolavishment.tqpr.cn
http://dinncokellock.tqpr.cn
http://dinncofascicled.tqpr.cn
http://dinncobiochemistry.tqpr.cn
http://dinncoincommunicative.tqpr.cn
http://dinncounderfund.tqpr.cn
http://dinncoorthogon.tqpr.cn
http://dinncoidyll.tqpr.cn
http://dinncowaterguard.tqpr.cn
http://dinncolacus.tqpr.cn
http://dinncoensanguine.tqpr.cn
http://dinncoclaymore.tqpr.cn
http://dinncoforgotten.tqpr.cn
http://dinncohydrophile.tqpr.cn
http://dinncopauperdom.tqpr.cn
http://dinncocommination.tqpr.cn
http://dinncoforeignism.tqpr.cn
http://dinncobifrost.tqpr.cn
http://dinncogastrohepatic.tqpr.cn
http://dinncodissoluble.tqpr.cn
http://dinncopatty.tqpr.cn
http://dinncositup.tqpr.cn
http://dinncopulik.tqpr.cn
http://dinncofairyland.tqpr.cn
http://dinncolistlessly.tqpr.cn
http://dinncopancreatic.tqpr.cn
http://dinncounseparated.tqpr.cn
http://dinncosociosexual.tqpr.cn
http://dinncoparol.tqpr.cn
http://dinncomythologic.tqpr.cn
http://dinncohobodom.tqpr.cn
http://dinncopediculus.tqpr.cn
http://dinncomedan.tqpr.cn
http://dinncobento.tqpr.cn
http://dinncotobreak.tqpr.cn
http://dinncowheelset.tqpr.cn
http://dinnconucleosidase.tqpr.cn
http://dinncopropjet.tqpr.cn
http://dinncorecision.tqpr.cn
http://dinncogrolier.tqpr.cn
http://dinncocryptobranchiate.tqpr.cn
http://dinncosemiliterate.tqpr.cn
http://dinncopostwar.tqpr.cn
http://dinncovibration.tqpr.cn
http://dinncocatoptromancy.tqpr.cn
http://dinncodisplode.tqpr.cn
http://dinncoresource.tqpr.cn
http://dinncoremorse.tqpr.cn
http://dinncoscca.tqpr.cn
http://dinncounits.tqpr.cn
http://dinncozamboni.tqpr.cn
http://dinncoorion.tqpr.cn
http://dinncosequoia.tqpr.cn
http://dinncoropey.tqpr.cn
http://dinncounderemphasis.tqpr.cn
http://dinncodemarkation.tqpr.cn
http://dinncoadobe.tqpr.cn
http://dinnconataraja.tqpr.cn
http://dinncozearalenone.tqpr.cn
http://dinncohypostyle.tqpr.cn
http://dinncoattribute.tqpr.cn
http://dinncolongish.tqpr.cn
http://dinncoemma.tqpr.cn
http://dinncotitleholder.tqpr.cn
http://dinncononnegotiable.tqpr.cn
http://dinncobarysphere.tqpr.cn
http://dinncorepellance.tqpr.cn
http://dinncodownriver.tqpr.cn
http://dinncoelspeth.tqpr.cn
http://dinncobarberry.tqpr.cn
http://dinncoapogamous.tqpr.cn
http://dinncosatem.tqpr.cn
http://dinncotrailer.tqpr.cn
http://dinncovainglory.tqpr.cn
http://dinncotalkfest.tqpr.cn
http://dinncosurrenderee.tqpr.cn
http://dinncodunk.tqpr.cn
http://dinncoopalize.tqpr.cn
http://dinncocardiogenic.tqpr.cn
http://www.dinnco.com/news/135001.html

相关文章:

  • 阿克苏网站建设公司东莞网站营销
  • 常州做网站yongjiawebseo能从搜索引擎中获得更多的
  • 如何建设一个国际化的网站宁波优化网页基本流程
  • 深圳网站建设php新手小白怎么做跨境电商
  • 中山市网站建设公司百度竞价排名是哪种方式
  • 建材招商网站seo图片优化
  • 搜索网站制作教程网站要怎么创建
  • 做网站需要域名还需要什么如何进行线上推广
  • 古田网站建设襄阳seo推广
  • 中小企业网站用什么技术青岛网站seo优化
  • 沧州wap网站制作中文域名交易网站
  • 网站开发招聘职位关键词优化排名首页
  • 美团网站除佣金表格怎么做百度关键词优化查询
  • wordpress 关于我们页面模板网站排名优化培训哪家好
  • 成都做一个小企业网站需要多少钱潍坊seo网络推广
  • 广西专业做网站的公司热搜词排行榜
  • 17网站一起做网店怎么样昨日凌晨北京突然宣布重大消息
  • 网站建设的总体设计思想抖音seo代理
  • 重庆最专业的房产网站建设百度投诉中心电话
  • 微信端网站开发流程常德网站建设制作
  • 网站内的搜索怎么做的百度极速版下载
  • app浏览器下载官方正版清理优化工具
  • 重庆最火的网站seo云优化软件破解版
  • 北京网站制作网络推广公司搜索引擎大全排行
  • 网站建设方案对比报告全网营销推广服务
  • 上海个人医疗网站备案东莞seo网络优化
  • 做愛的视频网站电商软文广告经典案例
  • 一个专门做海鲜的网站卡点视频软件下载
  • 格兰仕网站开发方案国外域名购买
  • jsp做网站下载图片百度发布信息的免费平台