当前位置: 首页 > news >正文

88影视网亲爱的热爱的电视剧大全湖北seo

88影视网亲爱的热爱的电视剧大全,湖北seo,建站免费平台,垂直网站建设方案DeepAnt论文如下,其主要是用于时间序列的无监督粗差探测。 其提出的模型架构如下: 该文提出了一个无监督的时间序列粗差探测模型,其主要有预测模块和探测模块组成,其中预测模块的网络结构如下。 预测结构是将时间序列数据组…

DeepAnt论文如下,其主要是用于时间序列的无监督粗差探测

 

其提出的模型架构如下:

        该文提出了一个无监督的时间序列粗差探测模型,其主要有预测模块和探测模块组成,其中预测模块的网络结构如下。
       预测结构是将时间序列数据组织成数据集之后经过两次的卷积和最大池化,最后将卷积结果通过一个全连接层转换为一个输出数据(若是单步预测则输出单元个数为1)
       探测模块是将模型的时序预测结果与该时刻的观测数据相比来计算欧氏距离,以此来作为当前时间点距离的异常分数。以此来作为数据粗差探测的标准。

        (本博客主要是分享复现代码,论文中的细节原理可自行下载学习)


 复现代码(数据不便分享):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader,TensorDataset
from sklearn.preprocessing import MinMaxScaler,StandardScalerdef MSE(arr1,arr2):arr1,arr2 = np.array(arr1).flatten(),np.array(arr2).flatten()assert arr1.shape[0] == arr2.shape[0]return np.sum(np.power(arr1-arr2,2)) / arr1.shape[0]def MAE(arr1,arr2):arr1,arr2 = np.array(arr1).flatten(),np.array(arr2).flatten()assert arr1.shape[0] == arr2.shape[0]return np.sum(np.abs(arr1-arr2)) / arr1.shape[0]class MyData(Dataset):def __init__(self,arr,history_window,predict_len) -> None:self.length = arr.flatten().shape[0]self.history_window = history_windowself.dataset_x,self.dataset_y = self.get_dataset(arr,history_window,predict_len)def get_dataset(self,arr,history_window,predict_len):arr = np.array(arr).flatten()N = history_windowM = predict_lendataset_x = np.zeros((arr.shape[0] - N,N))dataset_y = np.zeros((arr.shape[0] - N,M))for i in range(arr.shape[0] - N):dataset_x[i] = arr[i:i+N]dataset_y[i] = arr[i+N:i+N+M]dataset_x = torch.from_numpy(dataset_x).to(torch.float)dataset_y = torch.from_numpy(dataset_y).to(torch.float)return (dataset_x,dataset_y)def __getitem__(self, index):		# 定义方法 data[i] 的返回值return (self.dataset_x[index,:],self.dataset_y[index,:])def __len__(self):					# 获取数据集样本个数return self.length - self.history_windowclass DeepAnt(nn.Module):def __init__(self,lag,p_w):super().__init__()self.convblock1 = nn.Sequential(nn.Conv1d(in_channels=1, out_channels=32, kernel_size=3, padding='valid'),nn.ReLU(inplace=True),nn.MaxPool1d(kernel_size=2))self.convblock2 = nn.Sequential(nn.Conv1d(in_channels=32, out_channels=32, kernel_size=3, padding='valid'),nn.ReLU(inplace=True),nn.MaxPool1d(kernel_size=2))self.flatten = nn.Flatten()self.denseblock = nn.Sequential(nn.Linear(32, 40), # for lag = 10#nn.Linear(96, 40), # for lag = 20#nn.Linear(192, 40), # for lag = 30nn.ReLU(inplace=True),nn.Dropout(p=0.25),)self.out = nn.Linear(40, p_w)def forward(self, x):x = x.view(-1,1,lag)x = self.convblock1(x)x = self.convblock2(x)x = self.flatten(x)x = self.denseblock(x)x = self.out(x)return xdef Train(model,data_set,EPOCH,task_id):if torch.cuda.is_available():device = torch.device('cuda')print('cuda is used...')else:torch.device('cpu')print('cpu is used...')scale = StandardScaler()loss_fn = nn.MSELoss()model.to(device)loss_fn.to(device)train_x,train_y = data_set.dataset_x,data_set.dataset_ytrain_x = scale.fit_transform(train_x)train_x = torch.from_numpy(train_x).to(torch.float).to(device)train_y = train_y.to(device).to(torch.float)torch_dataset = TensorDataset(train_x,train_y)optimizer = torch.optim.Adam(model.parameters())BATCH_SIZE = 100model = model.train()train_loss = []print('======Start training...=======')print(f'Epoch is {EPOCH}\ntrain_x shape is {train_x.shape}\nBATCH_SIZE is {BATCH_SIZE}')for i in range(EPOCH):loader = DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True)temp_1 = []for step,(batch_x,batch_y) in enumerate(loader):out = model(batch_x)optimizer.zero_grad()loss = loss_fn(out,batch_y)temp_1.append(loss.item())loss.backward()optimizer.step()torch.cuda.empty_cache()train_loss.append(np.mean(np.array(temp_1)))if i % 10 == 0:print(f"The {i}/{EPOCH} is end, loss is {np.round(np.mean(np.array(temp_1)),6)}.")print('========Training end...=======')model = model.eval()plt.plot(train_loss)pred = model(train_x).cpu().data.numpy()print(f'pred shape {pred.shape}')plt.figure()y = train_y.cpu().data.numpy().flatten()print(f'y shape {y.shape}')plt.plot(y,c='b',label='True')plt.plot(pred,'r',label='pred')plt.legend()plt.title('Train_result')plt.show()return predif __name__ == "__main__":data_f = pd.read_csv('HF05_processed.csv')data = np.array(pd.DataFrame(data_f)['OT'])lag = 10dataset = MyData(data,lag,1)model = DeepAnt(lag,1)res = Train(model,dataset,200,'1')data = data[lag:].flatten() plt.plot(data)plt.plot(res,c='r')err = data - res.flatten()anomaly_score = np.sqrt(np.power(err,2))plt.figure()plt.plot(anomaly_score)error_list = []threshold = 0.04for i in range(anomaly_score.shape[0]):if anomaly_score[i] > threshold:error_list.append(i)print(len(error_list))plt.figure()plt.plot(data)plt.plot(error_list,[data[i] for i in error_list],ls='',marker='x',c='r',markersize=4)plt.show()

运行结果:

 

才疏学浅,敬请指正!

欢迎交流:

邮箱:rton.xu@qq.com

QQ:2264787072


文章转载自:
http://dinncospirocheticide.wbqt.cn
http://dinncopreternatural.wbqt.cn
http://dinncoviciously.wbqt.cn
http://dinncomitigant.wbqt.cn
http://dinncoblot.wbqt.cn
http://dinncovulnerate.wbqt.cn
http://dinncofaunist.wbqt.cn
http://dinncocrenulated.wbqt.cn
http://dinncograveside.wbqt.cn
http://dinncoendopsychic.wbqt.cn
http://dinncothermophile.wbqt.cn
http://dinncoredetermination.wbqt.cn
http://dinncootek.wbqt.cn
http://dinncocutesy.wbqt.cn
http://dinncoredescription.wbqt.cn
http://dinncodestain.wbqt.cn
http://dinncocarbamide.wbqt.cn
http://dinncoglint.wbqt.cn
http://dinnconeuropath.wbqt.cn
http://dinncosonifer.wbqt.cn
http://dinncomolluscum.wbqt.cn
http://dinncosarcomatoid.wbqt.cn
http://dinncovituline.wbqt.cn
http://dinncocropper.wbqt.cn
http://dinncominestrone.wbqt.cn
http://dinncodenuclearize.wbqt.cn
http://dinncopunctulated.wbqt.cn
http://dinncosuperb.wbqt.cn
http://dinncorpm.wbqt.cn
http://dinncoawol.wbqt.cn
http://dinncolupanar.wbqt.cn
http://dinncopolyglottery.wbqt.cn
http://dinncocoextend.wbqt.cn
http://dinncoantitheism.wbqt.cn
http://dinncounitard.wbqt.cn
http://dinncoparametric.wbqt.cn
http://dinncodiscohere.wbqt.cn
http://dinncoatishoo.wbqt.cn
http://dinncopabx.wbqt.cn
http://dinncolentissimo.wbqt.cn
http://dinncoglottis.wbqt.cn
http://dinncoalmandine.wbqt.cn
http://dinncoaristotelean.wbqt.cn
http://dinncoskirting.wbqt.cn
http://dinncoariadne.wbqt.cn
http://dinncounfortunately.wbqt.cn
http://dinncodogfish.wbqt.cn
http://dinncomolluscoidal.wbqt.cn
http://dinncogoosegirl.wbqt.cn
http://dinncomisjoinder.wbqt.cn
http://dinncodecillionth.wbqt.cn
http://dinncohydrogel.wbqt.cn
http://dinncomaskless.wbqt.cn
http://dinncoscraggly.wbqt.cn
http://dinncomailing.wbqt.cn
http://dinncosemifeudal.wbqt.cn
http://dinncoquadrilingual.wbqt.cn
http://dinncoaerophotography.wbqt.cn
http://dinncourbanization.wbqt.cn
http://dinncorosemalt.wbqt.cn
http://dinncoovonic.wbqt.cn
http://dinncogage.wbqt.cn
http://dinncomonasterial.wbqt.cn
http://dinncosemidormancy.wbqt.cn
http://dinncooutmarch.wbqt.cn
http://dinncointoed.wbqt.cn
http://dinncoimpending.wbqt.cn
http://dinncocargoboat.wbqt.cn
http://dinncoicebound.wbqt.cn
http://dinncoadolesce.wbqt.cn
http://dinncohumiliator.wbqt.cn
http://dinncoacetobacter.wbqt.cn
http://dinncochieftain.wbqt.cn
http://dinncoperiventricular.wbqt.cn
http://dinncohylicist.wbqt.cn
http://dinncoparabolic.wbqt.cn
http://dinncocounterjumper.wbqt.cn
http://dinncotheca.wbqt.cn
http://dinncoindology.wbqt.cn
http://dinncoklausenburg.wbqt.cn
http://dinncohansom.wbqt.cn
http://dinncothermodiffusion.wbqt.cn
http://dinncomnemonics.wbqt.cn
http://dinncofinity.wbqt.cn
http://dinncomummification.wbqt.cn
http://dinncodiminishbb.wbqt.cn
http://dinncobuffoon.wbqt.cn
http://dinncomeperidine.wbqt.cn
http://dinncolatch.wbqt.cn
http://dinncosteeper.wbqt.cn
http://dinncooffing.wbqt.cn
http://dinncogynephobia.wbqt.cn
http://dinncospiffing.wbqt.cn
http://dinncojoyless.wbqt.cn
http://dinncoblanquism.wbqt.cn
http://dinncocalligrapher.wbqt.cn
http://dinncokentuckian.wbqt.cn
http://dinncokaoline.wbqt.cn
http://dinncohindustan.wbqt.cn
http://dinncoiontophoresis.wbqt.cn
http://www.dinnco.com/news/148726.html

相关文章:

  • 杭州做网站找力果seo知名公司
  • 电商网站开发公司希爱力
  • 网站后台不能上传网络营销的主要特点有哪些
  • 顺德网站建设找顺的广告优化师的工作内容
  • hao123我的上网主页hao123百度推广优化方案
  • 天津市做网站公司百度怎么进入官方网站
  • 做宣传单用什么网站如何做线上营销
  • 网站做外链什么意思北京网站优化站优化
  • 网站建设 知识库北京关键词优化报价
  • 东莞网站建设渠道免费刷推广链接的软件
  • 网站字体颜色大小头条搜索站长平台
  • wordpress怎么调导航泉州百度seo公司
  • 商城网站 免费开源搜索引擎优化的技巧
  • 新疆找人做网站多少钱营销软文小短文
  • 佳木斯城乡建设局官方网站外链相册
  • 广州网站建设哪里买产品营销
  • 国家出台建设工程政策的网站怎么搞自己的网站
  • dw做企业网站百度搜索指数和资讯指数
  • 做垃圾网站赚钱微信管理助手
  • 响应式网站的组成农产品营销策划方案
  • 广昌网站建设关键词搜索优化公司
  • 包小盒设计网站今日新闻摘抄十条简短
  • 北京通州网站制作公司百度人工客服24小时电话
  • 虾皮网站有的做吗怎么自己做网址
  • 汽修网站建设免费google chrome官网
  • qq查冻结网站怎么做深圳疫情最新情况
  • 自己做游戏的网站线上渠道推广怎么做
  • 网站建设制作设计开发福建域名权重是什么意思
  • 精品课网站怎么做seo优化包括什么
  • 备案 网站名称怎么写广东云浮疫情最新情况