当前位置: 首页 > news >正文

手机网站建设书籍郑州seo价格

手机网站建设书籍,郑州seo价格,民用网络架构,有哪些做农产品的网站智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鼠群算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鼠群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鼠群算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鼠群算法

鼠群算法原理请参考:https://blog.csdn.net/u011835903/article/details/120947977
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鼠群算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明鼠群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

http://www.dinnco.com/news/14966.html

相关文章:

  • 做搞笑视频网站靠神魔赚钱开发做一个网站需要多少钱
  • 企业网站开发家居seo整站优化方案
  • 雷军做的网站旅游景点推广软文
  • 百度收录网站图片优化设计五年级下册数学答案
  • 网站的技术解决方案各大网站收录提交入口
  • 旅游网站建设电商代运营公司
  • 广州市网站建设制作设计平台网络营销具有哪些特点
  • b2c模式的电子商务网站有哪些写软文平台
  • 最新|全国疫情中高风险地区名单郑州seo管理
  • 推介网手机版seo专员招聘
  • 杭州建设培训中心网站如何建立网站平台的步骤
  • 如何做影视网站关键词查询的五种常用工具
  • 用python做网站的多吗青岛关键词优化seo
  • 哪家做网站做的好广州百度快速排名优化
  • 地方性门户网站有哪些广告网站策划方案
  • 精英学校老师给学生做的网站宣传产品的方式
  • 政府网站设计方案百度竞价推广自己可以做吗
  • tk域名注册网站seo关键词优化公司哪家好
  • 网站ui设计给用户提交什么佛山网站建设正规公司
  • 深圳网站建设工作专业整站优化
  • 网站建设电销话术设计网站一般多少钱
  • 网站开发PRD直播代运营公司
  • 北京seo代理商东莞关键词优化实力乐云seo
  • 做外贸网站平台seo搜索引擎营销工具
  • 建设部网站监管平台爱战网关键词工具
  • 设计家官网台湾广东网站优化公司
  • 专业帮人做网站号码网络营销的八大能力
  • Wordpress向导汕头seo外包平台
  • 德阳网站建设ghxhwl青岛推广优化
  • 用模板做的网站多少钱360推广官网