当前位置: 首页 > news >正文

江苏省城乡建设局网站首页购买模板建站

江苏省城乡建设局网站首页,购买模板建站,专业的河南网站建设公司,南和县建设局黄页网站加班把数据库重构完毕 本文的数据库重构是基于 clickhouse 时序非关系型的数据库。该数据库适合存储股票数据,速度快,一般查询都是 ms 级别,不需要异步查询更新界面 ui。 达到目标效果:数据表随便删除,重新拉数据以及指…

加班把数据库重构完毕

本文的数据库重构是基于 clickhouse 时序非关系型的数据库。该数据库适合存储股票数据,速度快,一般查询都是 ms 级别,不需要异步查询更新界面 ui。

达到目标效果:数据表随便删除,重新拉数据以及指标计算,十多年的数据,整一个过程 5-6 分钟即可,速度远超通达信。因为每个季度数据回除权,所以旧的数据是有问题的,现在再也不怕删数据重新拉取重新计算了。

为啥要重构?

  1. 以前日行情数据和指标数值是分开两个表的,后面继续研究 clickhouse 数据库,发现根本不需要多表存储,因为 clickhouse 是列存储方式,所以宽表并不会影响查询速度。

  2. 以前数据经常出现不完整情况,指标数据计算会发生日级别的断层。

  3. 以前数据重复插入的时候,查出来经常需要去重,增加了消耗。

  4. 以前很害怕数据重新拉取和计算,因为经常出现数据不完整问题,都不敢删重新来过,不然又要停机查问题了,现在随便删随便重新计算,彻底解决了这个问题。

关键设计

把所有的股票的日行情数据和指标数据存储在一个表

理由:

  1. 可以多个股票同时查询。
  2. 可以多个股票同一个时间段同时查询。
  3. 可以选择性查询某部分字段,不需要跨表,从而提高效率。
  4. 可以完成数据的完整性和自动去重。

疑问:

  1. 有的同学疑惑,所有日行情数据和指标数据放一个表会不会增加查询速度。
    答案:不会,这是因为 clickhouse 为快速处理这大数据问题效率慢设计好了。

  2. 如何设置排序值?
    答案:因为我们把所有股票数据以及指标放在了同一个表中,所以需要把 date 和 code 两个字段作为键值。

如何避免重复插入,查询数据是使用最新的数据?

  1. clickhouse 数据库并不擅长单列更新的,所以我们要更新某列的时候,原则是:先把要更新的行查出来,然后计算指标数据,填充完后,直接插回去即可,所以每一行需要添加一个 version 版本号,数据库会自动去重保存最新的版本号数据,旧数据数据库会自动删除。

  2. 由于采取的策略是查询数据出来,计算指标填充完重新插回去,所以我们使用的引擎策略是,ReplacingMergeTree,这个的意思是 clickhouse 数据库会自动去重。

  3. 查询,由于插入新的行的时候,如果有重复行 clickhouse 数据库是在后台不知何时才会自动触发去掉旧数据的,所以查询的使用要加个小技巧,要以版本号进行排序,然后取最新的一条, ORDER BY version DESC,LIMIT 1 BY code,date。具体的见代码。

  4. 创建表的关键。 引擎: ENGINE=ReplacingMergeTree(version) 以版本号作为去重标准,保留最新版本号的数据
    主键: PRIMARY KEY(javaHash(code), date) ,由于所有日行情数据放一个表,所以以 code,date 两个字段确定一行数据。
    排序值: ORDER BY(javaHash(code), date),以 code 和 date 作为排序,有了解过 clickhouse 数据库的同学就会知道,这两个字段决定了 clickhouse 的数据存储方式。

福利

如何同学也使用 clickhouse 数据库用来存储股票数据,或者还未建立数据库来存储数据的,建议你使用 clickhouse 用来存储,别用 MySql,场景不一样,MySql 适合业务型的,clickhouse 天生就是为数据分析而产生的。所以在查询速度上,clickhouse 是碾压 MySql 的。

可以直接使用我的代码,是经过不断测试趋于完善的了,没 bug 了。

我的重构代码:

import time

import pandahouse as ph
import pandas as pd
from clickhouse_driver import Client

'''
pandahouse 是通过http url 链接,端口号是8123
'
''
connection = dict(database="stock",
                  host="http://localhost:8123",
                  user='default',
                  password='sykent')

'''
clickhouse_driver 是通过TCP链接,端口号是9000
'
''

DB = 'stock'
# settings = {'max_threads': 5}
client = Client(database=f'{DB}',
                host='127.0.0.1',
                port='9000',
                user='default',
                password='sykent',
                # settings=settings
                )
sql = 'SET max_partitions_per_insert_block = 200'
client.execute(sql)
"""
表名
"
""
STOCK_DAILY_TABLE = 'stock_daily_price_v2'
INDUSTRY_DAILY_TABLE = 'industry_daily_v2'
INDUSTRY_CONSTITUENT_STOCK_TABLE = 'industry_constituent_stock_v2'
MARKET_DAILY_TABLE = 'market_daily_v2'


def stock_daily(
        pool_code,
        start_time,
        end_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询股票某个时间段日线数据
    :param pool_code: 股票代码池 list() ['000001', '000002'] 或者 '000001'
    :param start_time: 开始时间
    :param end_time: 结束时间
    :param use_col: 使用的列 list() ['open', 'close'],不传则使用全部列
    "
""
    return __query_daily_related(
        STOCK_DAILY_TABLE,
        pool_code,
        start_time,
        end_time,
        use_col
    )


def stock_daily_http(
        pool_code,
        start_time,
        end_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询股票某个时间段日线数据
    :param pool_code: 股票代码池 list() ['000001', '000002'] 或者 '000001'
    :param start_time: 开始时间
    :param end_time: 结束时间
    :param use_col: 使用的列 list() ['open', 'close'],不传则使用全部列
    "
""
    return __query_daily_related_http(
        STOCK_DAILY_TABLE,
        pool_code,
        start_time,
        end_time,
        use_col
    )


def stock_daily_on_date(
        pool_code,
        date_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询股票某日日线数据
    :param pool_code: 股票代码池 list() ['000001', '000002'] 或者 '000001'
    :param date_time: 日期
    :param use_col: 使用的列 list() ['open', 'close'],不传则使用全部列
    "
""
    return stock_daily(
        pool_code,
        date_time,
        date_time,
        use_col
    )


def industry_daily(
        pool_code,
        start_time,
        end_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询行业某个时间段日线数据
    :param 参照stock_daily
    "
""
    return __query_daily_related(
        INDUSTRY_DAILY_TABLE,
        pool_code,
        start_time,
        end_time,
        use_col
    )


def industry_daily_on_date(
        pool_code,
        date_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询行业某日日线数据
    :param 参照stock_daily_on_date
    "
""
    return industry_daily(
        pool_code,
        date_time,
        date_time,
        use_col
    )


def all_industry_daily_on_date(
        date_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询所有板块的某个日期的rps
    :param date_time:
    :param use_col:
    :return:
    "
""
    if use_col is None:
        sql = f"""
        SELECT *
        FROM {DB}.{INDUSTRY_DAILY_TABLE}
        WHERE date == '{date_time}'
        ORDER BY version DESC
        LIMIT 1 BY code,date
        "
""
    else:
        columns = 'date,code,' + ','.join(use_col) + ',version'
        sql = f"""
        SELECT {columns}
        FROM {DB}.{INDUSTRY_DAILY_TABLE}
        WHERE date == '{date_time}'
        ORDER BY version DESC
        LIMIT 1 BY code,date
        "
""
    df = from_table(sql)

    if df.empty:
        return df
    else:
        df.drop(columns='date', inplace=True)
        return df


def market_daily(
        pool_code,
        start_time,
        end_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询大盘指数某个时间段日线数据
    :param 参照stock_daily
    "
""
    return __query_daily_related(
        MARKET_DAILY_TABLE,
        pool_code,
        start_time,
        end_time,
        use_col
    )


def market_daily_on_date(
        pool_code,
        date_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询大盘指数某日日线数据
    :param 参照stock_daily_on_date
    "
""
    return market_daily(
        pool_code,
        date_time,
        date_time,
        use_col
    )


def board_constituent_stock(
        code
) -> pd.DataFrame:
    """
    板块成分股
    :param code: 板块代码
    :return:
    "
""
    sql = f"""
    SELECT *
    FROM {DB}.{INDUSTRY_CONSTITUENT_STOCK_TABLE}
    WHERE industry_code == '{code}'
    "
""
    return from_table(sql)


# @timing_decorator
def to_table(data, table):
    if data.empty:
        return 0

        # 获取columns 如果不包含 'date',重置index
    if 'date' not in data.columns:
        data.reset_index(inplace=True)

    data.insert(data.shape[1], 'version', int(time.time()))
    columns = ', '.join(data.columns)
    sql = f'INSERT INTO {table} ({columns}) VALUES'
    client.execute(sql, data.values.tolist())
    return data.shape[0]


# @timing_decorator
def to_table_common(data, table):
    columns = ', '.join(data.columns)
    sql = f'INSERT INTO {table} ({columns}) VALUES'
    client.execute(sql, data.values.tolist())
    return data.shape[0]


# @timing_decorator
def from_table(sql) -> pd.DataFrame:
    last_time = time.time()
    try:
        result = client.query_dataframe(sql)
    except Exception as e:
        print(e)
        result = pd.DataFrame()
    print("db-> 耗时: {}  sql: {}".format((time.time() - last_time) * 1000, sql))
    return result


def from_table_http(sql):
    """
    查询表
    :param sql:
    :return: dataframe
    "
""
    last_time = time.time()
    df = ph.read_clickhouse(sql, connection=connection)
    print("db-> 耗时: {}  sql: {}".format((time.time() - last_time) * 1000, sql))
    return df


def __creat_daily_related_table(table_name, **kwargs):
    """
    创建日行情相关的表
    注意:一定需要date,code这两列,作为排序值
    :param table_name: 表名
    :param kwargs: 列名
    :return:
    "
""
    columns_str = ''
    for key, value in kwargs.items():
        columns_str = columns_str + f'{key} {value},'
    columns_str = columns_str[:len(columns_str) - 1]
    # 自动添加列名 version 用于插入更新数据
    columns_str = columns_str + ',version Int64'
    if 'code' not in columns_str or 'date' not in columns_str:
        raise Exception('not column code date!!')

    sql = f"""
    CREATE TABLE if NOT EXISTS {table_name}({columns_str})
    ENGINE=ReplacingMergeTree(version)
    PRIMARY KEY(javaHash(code), date)
    ORDER BY(javaHash(code), date)
    "
""
    print('创建表sql:', sql)
    client.execute(sql)


def __creat_common_table(table_name, order_by=None, **kwargs):
    """
    创建通用的表,默认使用 ReplacingMergeTree,并自动添加列 version 用于插入更新数据,
    而且去重的时候,只会保留version最大的数据
    :param table_name: 表名
    :param order_by: 排序字段
    :param kwargs: 列名
    "
""

    columns_str = ''
    for key, value in kwargs.items():
        columns_str = columns_str + f'{key} {value},'
    columns_str = columns_str[:len(columns_str) - 1]
    # 自动添加列名 version 用于插入更新数据
    columns_str = columns_str + ',version Int64'
    sql = f"""
    CREATE TABLE if NOT EXISTS {table_name}({columns_str})
    ENGINE=ReplacingMergeTree(version)
    "
""
    if order_by is not None:
        sql = sql + f' ORDER BY{order_by}'
    print('创建表sql:', sql)
    client.execute(sql)


def __drop_table(table_name):
    """
    删除表
    :param table_name:
    :return:
    "
""
    sql = f'DROP TABLE IF EXISTS {table_name}'
    client.execute(sql)
    print('删除表sql:', sql)


def __query_daily_related(
        table,
        pool_code,
        start_time,
        end_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询股票相关的表
     eg:query_daily_related(['000001', '000002'], '2021-01-01', '2022-09-30')
    :param pool_code: 股票池 数据类型 list eg:'[000001', '000002']
    :param start_time: 开始时间
    :param end_time: 结束时间
    :param use_col: list 需要返回的列,默认返回 'date,code' 并设置 date 为 index
    :return:
    如果 start_time == end_time 则认为是查询某一天的数据
    version 为最新的数据,以此来去重
    "
""

    # 如果传入的是单个code,转换成list
    if type(pool_code) is not list:
        code = pool_code
        pool_code = list()
        pool_code.append(code)
    # 时间不相等,查询时间段的数据
    if start_time != end_time:
        if use_col is None:
            sql = f"""
            SELECT *
            FROM {DB}.{table}
            WHERE date BETWEEN '{start_time}' AND '{end_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        else:
            columns = 'date,code,' + ','.join(use_col) + ',version'
            sql = f"""
            SELECT {columns}
            FROM {DB}.{table}
            WHERE date BETWEEN '{start_time}' AND '{end_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        df = from_table_http(sql)
        if df.empty:
            return df
        # 设置date为index,并排序
        df.set_index('date', inplace=True)
        df.sort_index(inplace=True)
    # 时间相等,查询某一天的数据
    else:
        if use_col is None:
            sql = f"""
            SELECT *
            FROM {DB}.{table}
            WHERE date == '{start_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        else:
            columns = 'date,code,' + ','.join(use_col) + ',version'
            sql = f"""
            SELECT {columns}
            FROM {DB}.{table}
            WHERE date == '{start_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        df = from_table_http(sql)
        if df.empty:
            return df
        df.drop(columns=['date'], inplace=True)
    # version 为更新插入使用,删除version列
    df.drop(columns=['version'], inplace=True)
    return df


def __query_daily_related_http(
        table,
        pool_code,
        start_time,
        end_time,
        use_col=None
) -> pd.DataFrame:
    """
    查询股票相关的表
     eg:query_daily_related(['000001', '000002'], '2021-01-01', '2022-09-30')
    :param pool_code: 股票池 数据类型 list eg:'[000001', '000002']
    :param start_time: 开始时间
    :param end_time: 结束时间
    :param use_col: list 需要返回的列,默认返回 'date,code' 并设置 date 为 index
    :return:
    如果 start_time == end_time 则认为是查询某一天的数据
    version 为最新的数据,以此来去重
    "
""

    # 如果传入的是单个code,转换成list
    if type(pool_code) is not list:
        code = pool_code
        pool_code = list()
        pool_code.append(code)
    # 时间不相等,查询时间段的数据
    if start_time != end_time:
        if use_col is None:
            sql = f"""
            SELECT *
            FROM {DB}.{table}
            WHERE date BETWEEN '{start_time}' AND '{end_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        else:
            columns = 'date,code,' + ','.join(use_col) + ',version'
            sql = f"""
            SELECT {columns}
            FROM {DB}.{table}
            WHERE date BETWEEN '{start_time}' AND '{end_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        df = from_table_http(sql)
        if df.empty:
            return df
        df.set_index('date', inplace=True)
        df.sort_index(inplace=True)
    # 时间相等,查询某一天的数据
    else:
        if use_col is None:
            sql = f"""
            SELECT *
            FROM {DB}.{table}
            WHERE date == '{start_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        else:
            columns = 'date,code,' + ','.join(use_col) + ',version'
            sql = f"""
            SELECT {columns}
            FROM {DB}.{table}
            WHERE date == '{start_time}'
            AND code IN {pool_code}
            ORDER BY version DESC
            LIMIT 1 BY code,date
            "
""
        df = from_table_http(sql)
        if df.empty:
            return df
        df.drop(columns=['date'], inplace=True)
    # version 为更新插入使用,删除version列
    df.drop(columns=['version'], inplace=True)
    return df


def stock_length(code):
    """
    查询股票上市最小日期
    :param code:
    :return:
    "
""
    sql = f"""
    SELECT count()
    FROM {DB}.{STOCK_DAILY_TABLE}
    WHERE code == \'{code}\'
    "
""
    count = client.execute(sql)[0][0]
    print('stock_length sql:', sql, f'result count {count}')
    return count


def create_market_daily_table():
    """
    大盘数据表
    :return:
    "
""
    columns = {
        'date''Date',
        'code''String',
        'name''String',
        'open''Float32',
        'high''Float32',
        'low''Float32',
        'close''Float32',
        'volume''Float64',
        'amount''Float64',
        'change''Float32',
        'change_amount''Float32',
        'amplitude''Float32',
        'turnover''Float32'}
    __creat_daily_related_table(MARKET_DAILY_TABLE, **columns)


def create_stock_daily_table():
    """
    创建日行情数据表
    :return:
    "
""
    columns = {
        'date''Date',
        'code''String',
        'name''String',
        'open''Float32',
        'high''Float32',
        'low''Float32',
        'close''Float32',
        'change''Float32',
        'change_amount''Float32',
        'volume''Float64',
        'amount''Float64',
        'amplitude''Float32',
        'turnover''Float32',
        'amp05''Float32',
        'amp10''Float32',
        'amp20''Float32',
        'amp50''Float32',
        'amp120''Float32',
        'amp250''Float32',
        'ma05''Float32',
        'ma10''Float32',
        'ma20''Float32',
        'ma50''Float32',
        'ma120''Float32',
        'ma250''Float32',
        'rps05''Float32',
        'rps10''Float32',
        'rps20''Float32',
        'rps50''Float32',
        'rps120''Float32',
        'rps250''Float32', }
    __creat_daily_related_table(STOCK_DAILY_TABLE, **columns)


def create_industry_daily_table():
    """
    创建板块日行情
    :return:
    "
""
    columns = {
        'date''Date',
        'code''String',
        'name''String',
        'open''Float32',
        'high''Float32',
        'low''Float32',
        'close''Float32',
        'change''Float32',
        'change_amount''Float32',
        'volume''Float64',
        'amount''Float64',
        'amplitude''Float32',
        'turnover''Float32',
        'amp05''Float32',
        'amp10''Float32',
        'amp20''Float32',
        'amp50''Float32',
        'amp120''Float32',
        'amp250''Float32',
        'ma05''Float32',
        'ma10''Float32',
        'ma20''Float32',
        'ma50''Float32',
        'ma120''Float32',
        'ma250''Float32',
        'rps05''Float32',
        'rps10''Float32',
        'rps20''Float32',
        'rps50''Float32',
        'rps120''Float32',
        'rps250''Float32', }
    __creat_daily_related_table(INDUSTRY_DAILY_TABLE, **columns)


def create_industry_constituent_stock_table():
    """
    创建板块成分股
    :return:
    "
""
    columns = {
        'industry_code''String',
        'stock_code''String',
        'industry_name''String',
        'stock_name''String'}
    __creat_common_table(
        table_name=INDUSTRY_CONSTITUENT_STOCK_TABLE,
        order_by='(javaHash(industry_code), javaHash(stock_code))',
        **columns)


def create_all_table():
    # 创建日行情数据表
    create_stock_daily_table()
    # 创建板块日行情表
    create_industry_daily_table()
    # 创建板块成分股表
    create_industry_constituent_stock_table()
    # 创建大盘数据表
    create_market_daily_table()


def optimize(table_name):
    """
    手动触发数据表去重操作
    场景: 在更新表后,由于重复的ReplacingMergeTree是不定时触发的,
    所以可以强制调用触发。
    :param table_name:
    :return:
    "
""
    sql = f'optimize table stock.{table_name}'
    client.execute(sql)


def drop_all_table():
    __drop_table(STOCK_DAILY_TABLE)
    __drop_table(INDUSTRY_DAILY_TABLE)
    __drop_table(INDUSTRY_CONSTITUENT_STOCK_TABLE)
    __drop_table(MARKET_DAILY_TABLE)


def optimize_all():
    optimize(STOCK_DAILY_TABLE)
    optimize(INDUSTRY_DAILY_TABLE)
    optimize(INDUSTRY_CONSTITUENT_STOCK_TABLE)
    optimize(MARKET_DAILY_TABLE)


if __name__ == '__main__':
    count = stock_length('000001')
    print(count)

效果

  1. 重构的时候要用新的表,这样在重构的过程中不会影响旧数据的运行,稳定后就可以把新表替换旧表的逻辑了。
alt
  1. 新数据替换旧表,接回原来的 ui 使用中,这个过程其实也很简单,替换数据库的查询类即可。

行业板块面板 ui

alt

单个板块的可视化,板块成分股 ui

alt

个股的数据 ui

alt

本文由 mdnice 多平台发布


文章转载自:
http://dinncocrunchy.knnc.cn
http://dinncopfalz.knnc.cn
http://dinncodisputability.knnc.cn
http://dinncoliberaloid.knnc.cn
http://dinncoarctic.knnc.cn
http://dinncolearnable.knnc.cn
http://dinncopastiche.knnc.cn
http://dinncomaulana.knnc.cn
http://dinncorad.knnc.cn
http://dinncosoftheaded.knnc.cn
http://dinncocashmerette.knnc.cn
http://dinncounapprised.knnc.cn
http://dinncopeekaboo.knnc.cn
http://dinncommm.knnc.cn
http://dinncoillustration.knnc.cn
http://dinncopredicability.knnc.cn
http://dinncodiscept.knnc.cn
http://dinncozg.knnc.cn
http://dinncoinbreeding.knnc.cn
http://dinncocarriole.knnc.cn
http://dinncotrite.knnc.cn
http://dinncoartlessness.knnc.cn
http://dinncodicephalous.knnc.cn
http://dinncopeart.knnc.cn
http://dinncoamortization.knnc.cn
http://dinncoungimmicky.knnc.cn
http://dinncothroughway.knnc.cn
http://dinncoarbour.knnc.cn
http://dinncorhombic.knnc.cn
http://dinncoblueness.knnc.cn
http://dinncocitriculturist.knnc.cn
http://dinncogalactoid.knnc.cn
http://dinncoarmourer.knnc.cn
http://dinncoarrenotoky.knnc.cn
http://dinncosaurel.knnc.cn
http://dinncointercessory.knnc.cn
http://dinncogilt.knnc.cn
http://dinncoduce.knnc.cn
http://dinncoburnisher.knnc.cn
http://dinncoquickwater.knnc.cn
http://dinncomister.knnc.cn
http://dinncoeblaite.knnc.cn
http://dinncopredominance.knnc.cn
http://dinncoostracode.knnc.cn
http://dinncobeguile.knnc.cn
http://dinncocetology.knnc.cn
http://dinncolending.knnc.cn
http://dinncoskytroops.knnc.cn
http://dinncopumpman.knnc.cn
http://dinncoarrantly.knnc.cn
http://dinncopassible.knnc.cn
http://dinncolimbed.knnc.cn
http://dinncoanjou.knnc.cn
http://dinncoknowledgeability.knnc.cn
http://dinncononviolent.knnc.cn
http://dinncotridymite.knnc.cn
http://dinncowidger.knnc.cn
http://dinncojudy.knnc.cn
http://dinncounenclosed.knnc.cn
http://dinncorecreative.knnc.cn
http://dinncogemmulation.knnc.cn
http://dinncohwyl.knnc.cn
http://dinncolandlocked.knnc.cn
http://dinnconother.knnc.cn
http://dinncoammocolous.knnc.cn
http://dinncogeotropic.knnc.cn
http://dinncoropeway.knnc.cn
http://dinncoevocator.knnc.cn
http://dinncorote.knnc.cn
http://dinncotompion.knnc.cn
http://dinncofreehold.knnc.cn
http://dinncosaponify.knnc.cn
http://dinncoarmorbearer.knnc.cn
http://dinncorommany.knnc.cn
http://dinncoontogenic.knnc.cn
http://dinncosandia.knnc.cn
http://dinncotoothbrush.knnc.cn
http://dinncothyrotrophin.knnc.cn
http://dinncoquotient.knnc.cn
http://dinncothomas.knnc.cn
http://dinncodardan.knnc.cn
http://dinncoaerometry.knnc.cn
http://dinncooestrum.knnc.cn
http://dinncocomfrey.knnc.cn
http://dinncostriated.knnc.cn
http://dinncocalicoback.knnc.cn
http://dinncolispingly.knnc.cn
http://dinncotalma.knnc.cn
http://dinncotourmaline.knnc.cn
http://dinncoringlet.knnc.cn
http://dinncovariety.knnc.cn
http://dinncoperdure.knnc.cn
http://dinncoscuncheon.knnc.cn
http://dinnconativist.knnc.cn
http://dinncomonobloc.knnc.cn
http://dinncoprosector.knnc.cn
http://dinncoyale.knnc.cn
http://dinncopedunculate.knnc.cn
http://dinncomisdo.knnc.cn
http://dinncolactate.knnc.cn
http://www.dinnco.com/news/158640.html

相关文章:

  • 三分钟做网站百家联盟推广部电话多少
  • 云服务器做网站好吗电商推广联盟
  • 网站建立方案网络营销现状分析
  • 临沂网站设计软文推广的标准类型
  • 怎么用手机创建网站郑州seo优化大师
  • 北京工程信息网站最新国际新闻10条
  • 建设部门电工证查询网站seo营销论文
  • 固始做网站经典软文推广案例
  • 牟平做网站重庆网站建设
  • 宁波网站优化方案指数基金定投怎么买
  • 网站底部加备案号整站seo技术搜索引擎优化
  • 摄影网站建设策划完整方案网站推广优化排名教程
  • 我找客户做网站怎么说google关键词分析工具
  • 网站建设移动网络公司网络优化公司
  • 武汉社会面疫情东莞关键词优化实力乐云seo
  • 长沙专业网站制作设计登录百度账号注册
  • 网站的形式有哪些网站优化设计的基础是网站基本要素及每个细节的优化
  • 鹿泉市建设局网站白城seo
  • 中山精品网站建设精英网站流量统计分析的维度包括
  • 快速网站优化服务网络营销常见术语
  • 天津网站搜索优化写软文推广
  • 17网站一起做网店潮汕档口万网域名查询官网
  • 网站做的跟别人的一样可以吗市场推广计划怎么写
  • 大气网站案例seo代码优化步骤
  • 海南网站建设推广公司百度推广登录平台官网
  • 知名企业网站搭建google play下载
  • 免费制作广州网站指数函数图像
  • html在网站开发中的应用上海有名网站建站开发公司
  • 溧阳常州做网站谷歌google官方网站
  • 广州一流高校建设网站什么平台可以免费打广告