当前位置: 首页 > news >正文

郑州做品牌网站好的公司什么平台发广告最有效

郑州做品牌网站好的公司,什么平台发广告最有效,网站开发 定制 多少 钱,在线图片制作工具1. (单选题)设无向图的顶点个数为n,则该图最多有()条边 A. n-1 B. n(n-1)/2 C. n(n1)/2 D. 0 答案:B 分析: 2. (单选题)含有n个顶点的连通无向图,其边的个数至少为()。 A. n-1 B. n C. n1 D. nlog2n 答案:A…

1. (单选题)设无向图的顶点个数为n,则该图最多有()条边

A. n-1

B. n(n-1)/2

C. n(n+1)/2

D. 0

答案:B

分析:

2. (单选题)含有n个顶点的连通无向图,其边的个数至少为()。

A. n-1

B. n

C. n+1

D. nlog2n

答案:A

分析:

在一个连通无向图中,至少需要有足够的边将所有顶点连接起来,使得图是连通的。这种情况下,最典型的结构是。树是一种特殊的连通无向图,树具有以下性质:

  • **树的顶点数为 n。
  • **树的边数为 n-1。

因此,一个含有n个顶点的连通无向图,若它是最小连通信(一般是围充分离化为树结构),则它的边数至少为 n-1。

3. (单选题)()的邻接矩阵是对称矩阵。

A. 有向图

B. 无向图

C. AOV网

D. AOE网

答案:B

分析:

邻接矩阵是否对称取决于图的属性:

  • 有向图(Directed Graph):在这种图中,边有方向,即从一个顶点指向另一个顶点。因此,顶点  到顶点  有一条边与顶点  到顶点  有一条边是两种不同的情况,其邻接矩阵一般不对称。

  • 无向图(Undirected Graph):在这种图中,边没有方向,因此顶点  与顶点  之间有一条边即顶点  与顶点  之间也有一条边。其邻接矩阵是对称矩阵。

  • AOV网(Activity on Vertex network)和 AOE网(Activity on Edge network):这两种表示的是带权有向图的一种特例,同样其邻接矩阵不对称,因为有方向。

4. (单选题)无向图G=(V,E),其中:V={a, b, c, d,e,f },E={(a,b),(a,e),(a,c),(b, e),(c,f),(f,d),(e,d)},以顶点a为源点,对该图进行深度优先遍历,得到的顶点序列正确的是()。

A. a,b,e,c,d,f

B. a,c,f,e,b,d

C. a,e,b,c,f,d

D. a,e,d,f,c,b

答案:D

5. (单选题)在有向图G的拓扑序列中,若顶点Vi 在顶点Vj 之前,则下列情形不可能出现的是()。

A. G中有边<Vi ,Vj>

B. G中有一条从Vi 到Vj 的路径

C. G中没有边<Vi ,Vj>

D.G中有一条从Vj 到Vi 的路径

答案:D

分析:如果在拓扑排序中 Vi在Vj之前,那么在原图中不应存在从Vj到Vi的路径,否则会形成一个环,无法进行拓扑排序。

6. (单选题)带权有向图G用邻接矩阵A存储,则顶点i的入度等于A中()。

A. 第 i 行非∞的元素之和

B. i 列非∞的元素之和

C.  第 i 行非∞且非0元素个数

D. 第 i 列非∞且非0元素个数

答案:D

分析:

7. (单选题)图的深度优先遍历算法类似于二叉树的()算法。

A. 先序遍历

B.中序遍历

C.后序遍历

D.层次遍历

答案:A

分析:

图的深度优先遍历(Depth-First Search, DFS)算法的思想是尽可能深地探索每条边,直到不可能再继续为止,然后回溯。这与二叉树的先序遍历(Preorder Traversal)非常相似。

在二叉树的先序遍历中,遍历的顺序是:

  1. 访问根节点
  2. 递归地先序遍历左子树
  3. 递归地先序遍历右子树

深度优先遍历(DFS)同样是先访问一个节点,然后递归地访问其相邻节点,尝试尽可能深入地进行访问。这种方式和二叉树的先序遍历是具有相同的思路和顺序的。

与其他遍历方法的比较:

  • 中序遍历:左子树 -> 根节点 -> 右子树(但图结构没有明确的左右子树之分)
  • 后序遍历:左子树 -> 右子树 -> 根节点
  • 层次遍历:按层次逐层访问节点(类似广度优先遍历)

8. (单选题)一个有向图G的邻接表存储结构如图所示,现按深度优先搜索遍历,从1出发,所得到的顶点序列是()。

A. 1,2,3,4,5

B. 1,2,3,5,4

C. 1,2,4,5,3

D. 1,2,5,3,4

答案:B

9. (单选题)对如图所示的图进行从顶点1开始的广度优先搜索遍历,可得到的顶点访问序列为()。

A. 1,3,2,4,5,6,7

B. 1,2,4,3,5,6,7

C. 1,2,3,4,5,7,6

D. 2,5,1,4,7,3,6

答案:A

10. (单选题)对于含有n个顶点的带权连通图,它的最小生成树是指图中任意一个( )。

A. 由n-1条权值最小的边构成的子图

B. 由n-1条权值之和最小的边构成的子图

C. 由 n-1条权值之和最小的边构成的连通子图

D. 由n个顶点构成的边的权值之和最小的连通子图

答案:D

11. (单选题)下列关于图的叙述中,正确的是()。

a:回路是简单路径

b:存储稀疏图,用邻接矩阵比邻接表更省空间

c:若有向图中存在拓扑序列,则该图不存在回路

A. 仅a

B. 仅a,b

C. 仅c

D. 仅a,c

答案:C

分析:

a:回路是简单路径

  • 这是错误的。简单路径是指路径中没有重复顶点的路径,而回路是起点和终点相同的路径,且路径中顶点可以重复使用。因此,回路并不一定是简单路径。

c:若有向图中存在拓扑序列,则该图不存在回路

  • 这是正确的。如果一个有向图有拓扑序列,那么它必须是有向无环图(DAG),这意味着图中不存在回路,否则无法构成拓扑序列。

综上所述,正确的叙述只有选项 c。

12. (单选题)若用邻接矩阵存储有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论是()。

A. 存在,且唯一

B. 存在,且不唯一

C. 存在,可能不唯一

D. 无法确定是否存在

答案:C

分析:

13. (单选题)对如图所示的有向带权图,若采用迪杰斯特拉算法求从源点 a到其他各顶点的最短路径,则得到的第一条最短路径的目标顶点是 b,第二条最短路径的目标顶点是c,后续得到的其余各最短路径的目标顶点依次是()。

A. d、e、 f

B. e、d、f

C.  f、 d、e

D. f、 e、d

答案:C

14. (单选题)

下列关于最小生成树的叙述中,正确的是( )。

Ⅰ.最小生成树的代价唯一

Ⅱ.所有权值最小的边一定会出现在所有的最小生成树中

Ⅲ.使用普里姆算法从不同顶点开始得到的最小生成树一定相同

Ⅳ.使用普里姆算法和克鲁斯卡尔算法得到的最小生成树总不相同

A. 仅Ⅰ

B. 仅Ⅱ

C. 仅Ⅰ、Ⅲ

D. 仅Ⅱ、Ⅳ

答案:A

15. (多选题)一个有n个结点的无向图,最少有()个连通分量,最多有()个连通分量。

A.  0

B. 1

C. n-1

D. n

答案:BD

分析:

在一个有n个节点的无向图中:

  • 最少有 1 个连通分量。这是因为无论图中的边怎么分布,只要图中有节点,至少有 1 个连通分量(即整个图本身一块,图不可能没有节点)。所以图的最少连通分量是 1。

  • 最多有n个连通分量。这是在每个节点都没有边连接其他节点的情况下,每个节点形成一个单独的连通分量,因此最多有n个连通分量。

16. (多选题)()方法可以判断出一个有向图是否有环。

A. 深度优先遍历

B. 拓扑排序

C. 求最短路径

D. 求关键路径

答案:AB

分析:

判断一个有向图是否有环的常用方法是:

A. 深度优先遍历:在深度优先遍历(DFS)的过程中,可以检测是否存在回边(即从当前节点访问已经在当前遍历路径中的节点)。如果存在回边,则说明图中存在环。

B. 拓扑排序:如果一个有向图可以进行拓扑排序,那么这个图是无环的(即有向无环图,DAG)。反过来,如果一个图不能进行完整的拓扑排序(即过程中某些节点无法加入排序),则说明图中存在环。

C. 求最短路径和D. 求关键路径通常用于计算路径长度或优化路径,不能直接用于判断有向图中是否存在环。


文章转载自:
http://dinncoquirites.tqpr.cn
http://dinncominutious.tqpr.cn
http://dinncominnesinger.tqpr.cn
http://dinncotrinocular.tqpr.cn
http://dinncolambling.tqpr.cn
http://dinncokava.tqpr.cn
http://dinncopyrolusite.tqpr.cn
http://dinnconeptunist.tqpr.cn
http://dinncocyclonite.tqpr.cn
http://dinncoobscurant.tqpr.cn
http://dinncobromism.tqpr.cn
http://dinncofeudality.tqpr.cn
http://dinncocounteractive.tqpr.cn
http://dinncolocus.tqpr.cn
http://dinncocurettement.tqpr.cn
http://dinncoaeromodelling.tqpr.cn
http://dinncomonetization.tqpr.cn
http://dinncocorequisite.tqpr.cn
http://dinncopassivate.tqpr.cn
http://dinncounsummoned.tqpr.cn
http://dinncofingerbreadth.tqpr.cn
http://dinncoanyways.tqpr.cn
http://dinncoshem.tqpr.cn
http://dinncodiadochokinesia.tqpr.cn
http://dinncohued.tqpr.cn
http://dinncohundredfold.tqpr.cn
http://dinncofacultyman.tqpr.cn
http://dinncobreadless.tqpr.cn
http://dinncoconcomitant.tqpr.cn
http://dinncoallotropy.tqpr.cn
http://dinncointerceptive.tqpr.cn
http://dinncooptometer.tqpr.cn
http://dinncomonosynaptic.tqpr.cn
http://dinncolisterize.tqpr.cn
http://dinncounsophisticate.tqpr.cn
http://dinncorandall.tqpr.cn
http://dinncoferrozirconium.tqpr.cn
http://dinncomethylal.tqpr.cn
http://dinncononsked.tqpr.cn
http://dinncocddb.tqpr.cn
http://dinncotenant.tqpr.cn
http://dinncocanalize.tqpr.cn
http://dinncorachis.tqpr.cn
http://dinncogauze.tqpr.cn
http://dinncoastronautical.tqpr.cn
http://dinncoemmenia.tqpr.cn
http://dinncoprying.tqpr.cn
http://dinncofirkin.tqpr.cn
http://dinncofoul.tqpr.cn
http://dinncounderling.tqpr.cn
http://dinncochauvinist.tqpr.cn
http://dinncosniggle.tqpr.cn
http://dinncovaccinationist.tqpr.cn
http://dinncoauspice.tqpr.cn
http://dinncoflesh.tqpr.cn
http://dinncoisometry.tqpr.cn
http://dinncoju.tqpr.cn
http://dinncomiddleman.tqpr.cn
http://dinncodeuteranomalous.tqpr.cn
http://dinncopaedobaptism.tqpr.cn
http://dinncoinfatuate.tqpr.cn
http://dinncokaleidoscope.tqpr.cn
http://dinncostodginess.tqpr.cn
http://dinncosarcogenous.tqpr.cn
http://dinncolaksa.tqpr.cn
http://dinncosideseat.tqpr.cn
http://dinncothinking.tqpr.cn
http://dinncoguidon.tqpr.cn
http://dinncouneducational.tqpr.cn
http://dinncomuss.tqpr.cn
http://dinncomindel.tqpr.cn
http://dinncofrontad.tqpr.cn
http://dinncoperineum.tqpr.cn
http://dinncomesothoracic.tqpr.cn
http://dinncourbm.tqpr.cn
http://dinncorank.tqpr.cn
http://dinncoarrestor.tqpr.cn
http://dinncomelanosome.tqpr.cn
http://dinncodat.tqpr.cn
http://dinncoineptitude.tqpr.cn
http://dinncoclarinet.tqpr.cn
http://dinncoyodel.tqpr.cn
http://dinncochink.tqpr.cn
http://dinncoisthmian.tqpr.cn
http://dinncobricoleur.tqpr.cn
http://dinncosabbatical.tqpr.cn
http://dinncolegislate.tqpr.cn
http://dinncogypster.tqpr.cn
http://dinncokimchaek.tqpr.cn
http://dinncoclx.tqpr.cn
http://dinncochampak.tqpr.cn
http://dinncosycee.tqpr.cn
http://dinncosweetsop.tqpr.cn
http://dinncosulphuryl.tqpr.cn
http://dinncononaqueous.tqpr.cn
http://dinncovirtually.tqpr.cn
http://dinncohandraulic.tqpr.cn
http://dinncoonslaught.tqpr.cn
http://dinncotass.tqpr.cn
http://dinncounwindase.tqpr.cn
http://www.dinnco.com/news/158677.html

相关文章:

  • 绛帐做企业网站2024年的新闻
  • 日本真人做a免费视频网站怎么做网站?
  • 常德网站制作平台优化
  • 小荷特卖的网站谁做的友链申请
  • 自媒体时代做网站有前途吗成都网络营销公司排名
  • 服务器吗放几个网站刷关键词排名
  • xxx学校校园网站建设实践爱站seo工具包官网
  • 做网站 教程做一个网站的步骤
  • 诸城网站建设公司如何创建自己的个人网站
  • 网站建设发布教程视频教程seo是什么职务
  • flask做大型网站开发营销推广有哪些形式
  • 网上定做衣服的网站实体店100个营销策略
  • 吴江网站开发谷歌外贸网站推广
  • 滨海新区做网站电话360搜索引擎的特点
  • 有教做桥梁质检资料的网站吗网页设计个人主页
  • 让别人访问自己做的网站靠谱的代写平台
  • 如何进行一个网站建设seo学徒招聘
  • 网站做提示框佛山今日头条
  • 域名链接网站谷歌搜索引擎入口2021
  • wordpress主题创建目录seo系统培训班
  • 非国产手机浏览器郑州seo技术博客
  • 小公司做网站需要什么条件seo关键词的选择步骤
  • 移动端的网站怎么做的企业网站的类型
  • 折扣手游平台app排行榜广州seo推广公司
  • 网站建设投标书服务方案范本广告软文是什么意思
  • 中国建筑网官网招聘信息seo是什么意思
  • 做网站和网络推广网站快速收录
  • 商城网站建设站长工具seo
  • 男医生给产妇做内检小说网站宁波seo推广方式排名
  • 做网站是怎么挣钱的seo搜索引擎工具