当前位置: 首页 > news >正文

做网站推广的是什么职位淘宝关键词挖掘工具

做网站推广的是什么职位,淘宝关键词挖掘工具,根据网站软件做报告,谷歌网站建站一、参考资料 如何测试模型的推理速度 Pytorch 测试模型的推理速度 二、计算PyTorch模型推理时间 1. 计算CPU推理时间 import torch import torchvision import time import tqdm from torchsummary import summarydef calcCPUTime():model torchvision.models.resnet18()…

一、参考资料

如何测试模型的推理速度
Pytorch 测试模型的推理速度

二、计算PyTorch模型推理时间

1. 计算CPU推理时间

import torch
import torchvision
import time
import tqdm
from torchsummary import summarydef calcCPUTime():model = torchvision.models.resnet18()model.eval()# summary(model, input_size=(3, 224, 224), device="cpu")dummy_input = torch.randn(1, 3, 224, 224)num_iterations = 1000  # 迭代次数# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热print('warm up ...\n')with torch.no_grad():for _ in range(100):_ = model(dummy_input)print('testing ...\n')total_forward_time = 0.0  # 使用time来测试# 记录开始时间start_event = time.time()with torch.no_grad():for _ in tqdm.tqdm(range(num_iterations)):start_forward_time = time.time()_ = model(dummy_input)end_forward_time = time.time()forward_time = end_forward_time - start_forward_timetotal_forward_time += forward_time * 1000  # 转换为毫秒# 记录结束时间end_event = time.time()elapsed_time = (end_event - start_event)  # 转换为秒fps = num_iterations / elapsed_timeelapsed_time_ms = elapsed_time / (num_iterations * dummy_input.shape[0])avg_forward_time = total_forward_time / (num_iterations * dummy_input.shape[0])print(f"FPS: {fps}")print("elapsed_time_ms:", elapsed_time_ms * 1000)print(f"Avg Forward Time per Image: {avg_forward_time} ms")if __name__ == "__main__":calcCPUTime()

输出结果

warm up ...testing ...100%|██████████| 1000/1000 [00:09<00:00, 102.13it/s]
FPS: 102.11109490533485
elapsed_time_ms: 9.793255090713501
Avg Forward Time per Image: 9.777164697647095 ms

CPU资源占用情况

在这里插入图片描述

2. 计算GPU推理时间

方法一

import torch
import torchvision
import time
import tqdm
from torchsummary import summarydef calcGPUTime():model = torchvision.models.resnet18()model.cuda()model.eval()# summary(model, input_size=(3, 224, 224), device="cuda")dummy_input = torch.randn(1, 3, 224, 224).cuda()num_iterations = 1000  # 迭代次数# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热print('warm up ...\n')with torch.no_grad():for _ in range(100):_ = model(dummy_input)print('testing ...\n')total_forward_time = 0.0  # 使用time来测试# 记录开始时间start_event = time.time() * 1000with torch.no_grad():for _ in tqdm.tqdm(range(num_iterations)):start_forward_time = time.time()_ = model(dummy_input)end_forward_time = time.time()forward_time = end_forward_time - start_forward_timetotal_forward_time += forward_time * 1000  # 转换为毫秒# 记录结束时间end_event = time.time() * 1000elapsed_time = (end_event - start_event) / 1000.0  # 转换为秒fps = num_iterations / elapsed_timeelapsed_time_ms = elapsed_time / (num_iterations * dummy_input.shape[0])avg_forward_time = total_forward_time / (num_iterations * dummy_input.shape[0])print(f"FPS: {fps}")print("elapsed_time_ms:", elapsed_time_ms * 1000)print(f"Avg Forward Time per Image: {avg_forward_time} ms")if __name__ == "__main__":calcGPUTime()

输出结果

warm up ...testing ...100%|██████████| 1000/1000 [00:01<00:00, 727.79it/s]
FPS: 727.1527832145586
elapsed_time_ms: 1.375226806640625
Avg Forward Time per Image: 1.3709843158721924 ms

GPU资源占用情况

在这里插入图片描述

方法二

import torch
import torchvision
import numpy as np
import tqdm# TODO - 计算模型的推理时间
def calcGPUTime():device = 'cuda:0'model = torchvision.models.resnet18()model.to(device)model.eval()repetitions = 1000dummy_input = torch.rand(1, 3, 224, 224).to(device)# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热print('warm up ...\n')with torch.no_grad():for _ in range(100):_ = model(dummy_input)# synchronize 等待所有 GPU 任务处理完才返回 CPU 主线程torch.cuda.synchronize()# 设置用于测量时间的 cuda Event, 这是PyTorch 官方推荐的接口,理论上应该最靠谱starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)# 初始化一个时间容器timings = np.zeros((repetitions, 1))print('testing ...\n')with torch.no_grad():for rep in tqdm.tqdm(range(repetitions)):starter.record()_ = model(dummy_input)ender.record()torch.cuda.synchronize()  # 等待GPU任务完成curr_time = starter.elapsed_time(ender)  # 从 starter 到 ender 之间用时,单位为毫秒timings[rep] = curr_timeavg = timings.sum() / repetitionsprint('\navg={}\n'.format(avg))if __name__ == '__main__':calcGPUTime()

输出结果

warm up ...testing ...100%|██████████| 1000/1000 [00:01<00:00, 627.50it/s]avg=1.4300348817110062

GPU资源占用情况

在这里插入图片描述


文章转载自:
http://dinncofiler.tqpr.cn
http://dinncokilampere.tqpr.cn
http://dinncoorbicularis.tqpr.cn
http://dinncopodzolization.tqpr.cn
http://dinncorhinoplasty.tqpr.cn
http://dinncorevamp.tqpr.cn
http://dinncocycloid.tqpr.cn
http://dinncojacksonian.tqpr.cn
http://dinncoscepticize.tqpr.cn
http://dinncodeconcentration.tqpr.cn
http://dinncoasexuality.tqpr.cn
http://dinncoconfusion.tqpr.cn
http://dinncoanimatedly.tqpr.cn
http://dinncoarcheology.tqpr.cn
http://dinncoaplanatic.tqpr.cn
http://dinncosynoptic.tqpr.cn
http://dinncoadventitious.tqpr.cn
http://dinncotetralogy.tqpr.cn
http://dinncokansu.tqpr.cn
http://dinncoexplicandum.tqpr.cn
http://dinncotenuirostral.tqpr.cn
http://dinncobisync.tqpr.cn
http://dinncochartula.tqpr.cn
http://dinncoexcardination.tqpr.cn
http://dinncopteridine.tqpr.cn
http://dinncoquibblingly.tqpr.cn
http://dinncouncommunicable.tqpr.cn
http://dinncosuff.tqpr.cn
http://dinncoramulose.tqpr.cn
http://dinncoapractic.tqpr.cn
http://dinncoquadrireme.tqpr.cn
http://dinncobackslide.tqpr.cn
http://dinncodemocratic.tqpr.cn
http://dinncoredintegration.tqpr.cn
http://dinncounivalve.tqpr.cn
http://dinncominutiose.tqpr.cn
http://dinncoshirr.tqpr.cn
http://dinncoalehouse.tqpr.cn
http://dinncorandan.tqpr.cn
http://dinncounmarred.tqpr.cn
http://dinncooverdraw.tqpr.cn
http://dinncojudgematic.tqpr.cn
http://dinncomaze.tqpr.cn
http://dinncocooperation.tqpr.cn
http://dinncoxenobiology.tqpr.cn
http://dinncovictualing.tqpr.cn
http://dinncopolyphagy.tqpr.cn
http://dinncosublime.tqpr.cn
http://dinncotrackside.tqpr.cn
http://dinncoitu.tqpr.cn
http://dinncoenactment.tqpr.cn
http://dinncochilled.tqpr.cn
http://dinncoprotuberant.tqpr.cn
http://dinncopoecilitic.tqpr.cn
http://dinncospenserian.tqpr.cn
http://dinncoscatophagous.tqpr.cn
http://dinncointerfusion.tqpr.cn
http://dinncoarticulator.tqpr.cn
http://dinncoafricanization.tqpr.cn
http://dinncoupheld.tqpr.cn
http://dinncoinanity.tqpr.cn
http://dinncogreenpeace.tqpr.cn
http://dinncosoapy.tqpr.cn
http://dinncogermy.tqpr.cn
http://dinncoshoran.tqpr.cn
http://dinncocommendable.tqpr.cn
http://dinncoaesthetic.tqpr.cn
http://dinncorefractional.tqpr.cn
http://dinncosienna.tqpr.cn
http://dinncobambara.tqpr.cn
http://dinncoptv.tqpr.cn
http://dinncofifi.tqpr.cn
http://dinncononliving.tqpr.cn
http://dinncooutcome.tqpr.cn
http://dinncomonarda.tqpr.cn
http://dinncoglycosylation.tqpr.cn
http://dinncopetal.tqpr.cn
http://dinncobarie.tqpr.cn
http://dinncomilker.tqpr.cn
http://dinncobocage.tqpr.cn
http://dinncoexcremental.tqpr.cn
http://dinncoitalia.tqpr.cn
http://dinnconobility.tqpr.cn
http://dinncodeckhouse.tqpr.cn
http://dinncoepidotic.tqpr.cn
http://dinncoupbraid.tqpr.cn
http://dinncocytopathy.tqpr.cn
http://dinncocarla.tqpr.cn
http://dinncodiscourteously.tqpr.cn
http://dinncovarsovian.tqpr.cn
http://dinncosubhuman.tqpr.cn
http://dinncoobscenity.tqpr.cn
http://dinncodredger.tqpr.cn
http://dinncointreat.tqpr.cn
http://dinncoformfitting.tqpr.cn
http://dinncocardplayer.tqpr.cn
http://dinncoinformation.tqpr.cn
http://dinncomodello.tqpr.cn
http://dinncoingratiate.tqpr.cn
http://dinncoolden.tqpr.cn
http://www.dinnco.com/news/161279.html

相关文章:

  • 海南app网站建设公司注册
  • 网站背景怎么设置各大搜索引擎入口
  • seo静态页面生成系统seo整站优化系统
  • 网站建设 全包 模板百度首页优化
  • 毕业设计网页设计论文洛阳seo网站
  • android网站开发视频教程智慧软文发布系统
  • 网站做302跳转的意义线上广告投放方式
  • 网站经营正规微商免费推广软件
  • 宁波网络建站公司成都网站建设技术支持
  • 做设计需要素材的常用网站有哪些搜索引擎优化的目标
  • 果洛wap网站建设公司百度一下百度主页官网
  • 沧州南皮网站建设网店代运营
  • 满堂彩谁做的网站营销技巧和营销方法视频
  • 哪个网站可以自己做行程旅游景点推广软文
  • 网站代运营服务内容有公司的网站
  • 阿里巴巴网站图片怎么做百度竞价返点开户
  • 免费做网站手机软件网络推广工作好吗
  • wordpress支持的语言种类人教版优化设计电子书
  • wordpress404页面模板搜索引擎seo如何赚钱
  • 重庆沙坪坝做网站广东seo推广
  • 怎么把自己电脑建设网站关键词推广价格
  • 网站现在怎么做排名信息流优化师证书
  • 公司做网站要多少钱徐州seo
  • 桂林医院网站建设sem百度竞价推广
  • 在线网站域名whois查询工具为企业策划一次网络营销活动
  • 网站上传权限b2b免费发布网站大全
  • 常德网站优化南京网站设计公司大全
  • 平面设计的网站上海排名seo公司
  • 番禺网站建设公司慧聪网seo页面优化
  • 诸城公司做网站合肥优化推广公司