当前位置: 首页 > news >正文

网站建设都有什么栏目目前最火的自媒体平台

网站建设都有什么栏目,目前最火的自媒体平台,建设银行官方网站客户资料修改,wordpress设计笔记文章目录1.概况2.DBNet中的主要方法2.1 网络结构2.2 适应特征图融合模块(Adaptive Scale Fusion Module, ASF)3.ASF模块的源码实现参考资料欢迎访问个人网络日志🌹🌹知行空间🌹🌹 1.概况 2022年02月份论文:Real-Time S…

文章目录

    • 1.概况
    • 2.DBNet++中的主要方法
      • 2.1 网络结构
      • 2.2 适应特征图融合模块(Adaptive Scale Fusion Module, ASF)
    • 3.ASF模块的源码实现
    • 参考资料


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


1.概况

2022年02月份论文:Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion

DBNet是2019年11月华中科技大学的Xiang Bai等提出的方法,其详细介绍见4.基于分割的文本检测算法–DBNet

DBNet++是原作者团队基于DBNet的改进工作,是DBNet会议论文的期刊版,除了DBNet中已经介绍过的可微分二值化运算之外,DBNet++中的主要创新是自适应多尺度特征融合(Adapptive Scale Fusion,ASF)模块的提出。

在以往的分割算方法中,多尺度特征图大都是通过FPN后直接进行concatenate来实现,这样做并没有考虑不同尺度特征图的重要性是不一样的。本文中,作者提出的自适应特征图融合模块使用了空间注意力机制,具体的介绍见第2部分。

2.DBNet++中的主要方法

2.1 网络结构

在这里插入图片描述

如上图所示,DBNet++的网络结构几乎相同,使用FPNbackbone,可微分二值化,基于分割概率图求文本区域等,主要的不同在对backbone上输出的特征图的处理上,DBNet++中新引入了Adaptive Scale Fusion模块。

2.2 适应特征图融合模块(Adaptive Scale Fusion Module, ASF)

在这里插入图片描述

图中对一个特征图的shape描述进行了修改,原论文图中存在特征图shape从N×C×H×W经过conv后变成C×H×W容易引起误解(容易误会成卷积将四维向量变成了三维)。

计算过程如上图所示,值的注意的是空间注意力机制的使用,先是对每个通道取均值得到特征图每个像素位置上的重要性,再将其加到原输入特征图上,增强每个位置的特征值,再通过卷积输出通道为N个的注意力权重,使得输出的权重能衡量每个尺度特征图的重要性。

backbone提取后输入到 ASF的特征图为X∈RN×C×H×W={Xi}i=0N−1X\in R^{N\times C\times H\times W} = \{X_i\}_{i=0}^{N-1}XRN×C×H×W={Xi}i=0N1,N表示特征图个数,N=4
先将N个特征图 concatenate到一起,然后再经过一个3×33\times33×3的卷积层得中间特征图S∈RC×H×WS\in R^{C\times H\times W}SRC×H×W,将SSS输入到一个空间注意力模块得到注意力权重A∈RN×H×WA\in R^{N\times H\times W}ARN×H×W,注意力权重A有N个通道,将其沿通道方向切分得到N个权重矩阵[E0,E1,...,EN−1][E_0,E_1,...,E_{N-1}][E0,E1,...,EN1],将其分别与输入的N个特征图XXX对应相乘后再 concatenate到一起就得到了 ASF的输出。

S=Conv(concat([X0,X1,...,XN−1]))S = Conv(concat([X_0,X_1,...,X_{N-1}])) S=Conv(concat([X0,X1,...,XN1]))

A=SpatialAttention(S)A = Spatial_Attention(S) A=SpatialAttention(S)

F=concat([E0X0,E1X1,...,EN−1XN−1])F=concat([E_0X_0,E_1X_1,...,E_{N-1}X_{N-1}]) F=concat([E0X0,E1X1,...,EN1XN1])

3.ASF模块的源码实现

decoders/feature_attention.py

class ScaleSpatialAttention(nn.Module):def __init__(self, in_planes, out_planes, num_features, init_weight=True):super(ScaleSpatialAttention, self).__init__()self.spatial_wise = nn.Sequential(#Nx1xHxWnn.Conv2d(1, 1, 3, bias=False, padding=1),nn.ReLU(),nn.Conv2d(1, 1, 1, bias=False),nn.Sigmoid() )self.attention_wise = nn.Sequential(nn.Conv2d(in_planes, num_features, 1, bias=False),nn.Sigmoid())if init_weight:self._initialize_weights()...def forward(self, x):global_x = torch.mean(x, dim=1, keepdim=True)global_x = self.spatial_wise(global_x) + xglobal_x = self.attention_wise(global_x)return global_xclass ScaleFeatureSelection(nn.Module):def __init__(self, in_channels, inter_channels , out_features_num=4, attention_type='scale_spatial'):super(ScaleFeatureSelection, self).__init__()self.in_channels=in_channelsself.inter_channels = inter_channelsself.out_features_num = out_features_numself.conv = nn.Conv2d(in_channels, inter_channels, 3, padding=1)self.type = attention_typeif self.type == 'scale_spatial':self.enhanced_attention = ScaleSpatialAttention(inter_channels, inter_channels//4, out_features_num)elif self.type == 'scale_channel_spatial':self.enhanced_attention = ScaleChannelSpatialAttention(inter_channels, inter_channels // 4, out_features_num)elif self.type == 'scale_channel':self.enhanced_attention = ScaleChannelAttention(inter_channels, inter_channels//2, out_features_num)def _initialize_weights(self, m):classname = m.__class__.__name__if classname.find('Conv') != -1:nn.init.kaiming_normal_(m.weight.data)elif classname.find('BatchNorm') != -1:m.weight.data.fill_(1.)m.bias.data.fill_(1e-4)def forward(self, concat_x, features_list):concat_x = self.conv(concat_x)score = self.enhanced_attention(concat_x)assert len(features_list) == self.out_features_numif self.type not in ['scale_channel_spatial', 'scale_spatial']:shape = features_list[0].shape[2:]score = F.interpolate(score, size=shape, mode='bilinear')x = []for i in range(self.out_features_num):x.append(score[:, i:i+1] * features_list[i])return torch.cat(x, dim=1)
---

欢迎访问个人网络日志🌹🌹知行空间🌹🌹


参考资料

  • 1.https://github.com/MhLiao/DB
  • 2.Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion
http://www.dinnco.com/news/16582.html

相关文章:

  • 宁波甬晟园林建设有限公司网站百度快照是什么
  • 网站设计应该怎么做百度url提交
  • 手机网站 o2o网络营销策略包括哪些
  • WordPress快速发布文章seo搜索引擎官网
  • 网站制作属于什么科目太原网站推广公司
  • 一般网站开发用什么笔记本现在的seo1发布页在哪里
  • 北京 网络发布seo系统源码出售
  • 关于旅游网站建设毕业论文成都网站维护
  • 个人网站模板吧网站有吗免费的
  • 龙江网站建设广告营销策略有哪些
  • 列出网站目录网络推广公司名字大全
  • 陕西省西安市建设局网站手机百度seo快速排名
  • 无锡网站开发befen品牌广告和效果广告的区别
  • 网站什么时候做SEO优化最合适百度竞价托管公司
  • 做本地网站需要什么资质线上推广的方法
  • 帮忙建站的公司真正免费的网站建站平台有哪些
  • 宜都网站建设姓名查询
  • 备案网站查询推广途径有哪些
  • 网站css是什么百度搜索推广怎么做
  • 女同性怎么做的视频网站郑州百度快照优化
  • 合肥网站建设网新凡科网站官网
  • 用织梦系统做网站网站关键词快速排名优化
  • 长沙营销型网站建设费用怎么创建个人网站
  • 贵州城乡住房建设厅网站哪里有软件培训班
  • 三沙网站建设合肥网站seo
  • 外网专门做钙片的网站万网域名
  • 南通高端网站设计建设成都seo网站qq
  • 网站备案后可以更换域名吗seo百度网站排名研究中心关键词首页优化
  • 网页版梦幻西游辅助工具绍兴seo网站推广
  • 用html做网站搜索框网络营销的新特点