当前位置: 首页 > news >正文

安徽省建设业协会网站企业网站设计方案

安徽省建设业协会网站,企业网站设计方案,电商网站开发代码,百度云搜索引擎网站仅作自己学习使用 一、问题 旅行商问题(TSP) 是要求从一个城市出发,依次访问研究区所有的城市,并且只访问一次不能走回头路,最后回到起点,求一个使得总的周游路径最短的城市访问顺序。 采用模拟退火算法求解TSP问题&#x…

仅作自己学习使用


一、问题

        旅行商问题(TSP) 是要求从一个城市出发,依次访问研究区所有的城市,并且只访问一次不能走回头路,最后回到起点,求一个使得总的周游路径最短的城市访问顺序。
       采用模拟退火算法求解TSP问题,很自然的想到退火的目标函数(优化函数)应该就是总的周游距离。那么在算法中如何体现呢?那就是把城市的坐标放在一个n×2的矩阵中,矩阵中存放城市的顺序就是依次周游城市的路径,所以在求解过程中会不断的产生新的更优解(周游顺序,在算法中体现就是城市坐标的存放顺序),有了这个关键的思路就很好解决了。

二、Matlab代码

clear
clc
T1 = cputime;
C = [% 各个城市坐标39.91, 116.39;   % 北京31.22, 121.48;   % 上海23.13, 113.27;   % 广州22.54, 114.06;   % 深圳30.67, 104.06;   % 成都34.27, 108.93;   % 西安31.98, 118.75;   % 南京39.92, 116.36;   % 天津28.71, 115.83;   % 南昌45.75, 126.63;   % 哈尔滨36.07, 120.38;   % 青岛38.04, 114.48;   % 石家庄29.59, 106.54;   % 重庆26.08, 119.30;   % 福州30.25, 120.16;   % 杭州28.19, 112.97;   % 长沙25.03, 102.73;   % 昆明35.68, 139.76;   % 东京37.56, 126.97;   % 首尔1.35, 103.82;    % 新加坡13.41, 103.86;   % 金边21.03, 105.85;   % 河内3.14, 101.69;    % 吉隆坡39.90, 32.85;    % 安卡拉37.97, 23.73;    % 雅典38.71, -9.14;    % 里斯本41.89, 12.50;    % 罗马52.52, 13.41;    % 柏林55.75, 37.62;    % 莫斯科48.86, 2.35;     % 巴黎
];n = length(C);  % 获取城市的个数
T = 100 * n;    % 初始温度
L = 10;         % 马尔可夫链长度
K = 0.986;      % 降温系数%%  构建城市坐标结构体
city = struct([]);
for i = 1:ncity(i).x = C(i,1);     % 经度city(i).y = C(i,2);     % 纬度
end%% 开始退火
% 统计迭代次数
count = 1;   
% 计算每次迭代后的总距离(第一次就是初始时,按照坐标的顺序计算的距离)
Dist(count) = GetDist(city,n); 
figure(1)
% 当温度无限趋于0度时停止迭代
while T > 0.01 % 每次降温 均进行多次迭代for i = 1:L% 计算原路线周游距离len1 = GetDist(city,n);% 产生随机扰动(随机交换两个城市的坐标)p1 = floor(1 + n * rand()); % rand函数产生一个0,1之间均匀分布的实数,包含0但不包含1p2 = floor(1 + n * rand()); % 因此这个表达式可以产生一个从1到n的随机数while (p1 == p2)p1 = floor(1 + n * rand()); p2 = floor(1 + n * rand());endtemp_city = city;% 交换第P1个城市和第P2个城市的坐标temp = temp_city(p1);temp_city(p1) = temp_city(p2);temp_city(p2) = temp;% 计算新路线的周游距离len2 = GetDist(temp_city,n);% 新、老路线的差值(相当于能量)delta = len2 - len1;if(delta<0)% 新路线的评估函数更小(记住,模拟退火算法相当于是一个求函数极小值的算法)city = temp_city;  % 更新原路线(变量里存放城市的顺序也就是访问城市的顺序)else% Metropolis接受准则(概率选择更差的解)if exp((len1-len2)/T) > rand()% 记住这个概率的公式,指数部分一定是要个负数,概率的值不可能超过1city = temp_city;endendend% 本次迭代结束,统计迭代次数加1count = count + 1; % 将本次迭代的最优解放在len中Dist(count) = GetDist(city,n); %% 本次退火结束,降温T = T * K;% 按照新的城市的顺序,把这些城市画出来for i = 1: n-1plot([city(i).x,city(i+1).x],[city(i).y,city(i+1).y],'bo-');hold on;endplot([city(n).x,city(1).x],[city(n).y,city(1).y],'ro-');title(['优化最短距离:', num2str(Dist(count))]);hold offpause(0.005); % 动态显示出每次的搜索结果
end
T2 = cputime;
figure(2)
plot(Dist,LineWidth=2)
xlabel("迭代次数")
ylabel("目标函数值")
title("适应度进化曲线","搜索时间:"+(T2-T1)+" s")
%% 评估函数
function result = GetDist(city,n)
% 计算总的周游路径长度(评估函数)
% city是各个城市的坐标result = 0;for i = 1:n-1result = result + sqrt((city(i).x - city(i+1).x)^2 + (city(i).y - city(i+1).y)^2);endresult = result + sqrt((city(n).x - city(1).x)^2 + (city(n).y - city(1).y)^2);
end

三、效果

周游图

适应度进化曲线

四、问题

        大家可以试一试更多的城市,当有很多城市的坐标相差不大时,在最后的搜索结果中,会出现一个非常奇怪的问题,就是在周游图中,有些城市消失了,检查存放城市的city结构体,是存放着这些坐标的,这里如果有知道的朋友还请多多批评指教,我将及时改正。

http://www.dinnco.com/news/19552.html

相关文章:

  • 衢州市建设工程质量监督站网站烟台seo外包
  • 做黄色网站多少年怎样制作免费网页
  • jfinal怎么做网站深圳网站设计公司哪家好
  • 红酒网站建设策划书软文营销
  • 百度搜索网站打开错误艺考培训
  • 3yx这个网站做刷单网址seo分析
  • 余姚做网站哪家好舆情管理
  • 江西南昌电子商务网站建设公司全球热门网站排名
  • 开发一个网站需要多久宣传软文
  • 政府网站内容建设策划软件注册推广平台
  • 网站关键词设几个5g网络优化工程师
  • 世界互联网峰会概念股杭州seo排名优化
  • 做购物网站多少钱seo软件
  • 深圳营销网站制作免费网络推广平台有哪些
  • 网站运营维护竞价托管哪家便宜
  • 用php建设一个简单的网站南宁seo结算
  • windous 系统 做网站怎么申请网址
  • 万州那家做网站网站功能
  • 静态网站建设教程优化课程设置
  • 网站开发功能列表搜索引擎网站优化推广
  • 做模型的网站有哪些内容百度云搜索引擎入口网盘搜索神器
  • 网站后台功能模块seo短视频网页入口引流
  • 独立网站怎么做推广给大家科普一下b站推广网站
  • 石家庄哪里有网站建设产品推广软文200字
  • 嘉兴网站制作报价企业营销网站制作
  • 网站那种推广链接怎么做seo网页优化培训
  • 现在的网站开发用什么技术广告联盟赚钱app
  • 重庆 做网站seo网站推广主要目的不包括
  • 四川广安网站建设cms
  • 杜集网站建设舆情分析报告范文