南山商城网站建设多少钱奶茶软文案例300字
文章目录
- 一、AVL 树的概念
- 二、AVL 树的实现
- 1. AVL 树的存储结构
- 2. AVL 树的插入
一、AVL 树的概念
在 二叉搜索树 中,当我们连续插入有序的数据时,二叉搜索树可能会呈现单枝树的情况,此时二叉搜索树的查找效率为 O(N)
俄罗斯的两位数学家 G. M. Adelson-Velsky 和 E. M. Landis 发明了 AVL 树可以解决上述问题,AVL 树保证树中的每个结点的左右子树高度差不会超过 1,从而保证 AVL 树是一颗高度平衡的二叉搜索树,从而保证 AVL 树的搜索效率为 O(log N),AVL 树的名字就是取自于这两位科学家
一颗 AVL 树是 空树 或者满足如下条件:
- 左右子树的高度差小于等于 1 的二叉搜索树
- 左右子树均为 AVL 树
AVL 树是一颗在二叉搜索树并且满足所有结点的左右子树高度差不超过 1
二、AVL 树的实现
AVL 树有很多实现方式,这里采用三叉链和平衡因子,结点的平衡因子的值为右子树的高度减去左子树的高度,通过控制所有结点的平衡因子的绝对值小于等于 1,并且保证该树为二叉搜索树,即可实现 AVL 树
1. AVL 树的存储结构
// AVL 树的结点
template<class K, class V>
struct AVLTreeNode
{std::pair<K, V> _kv;AVLTreeNode<K, V>* _parent;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;int _bf; // 平衡因子: 右子树的高度前去左子树的高度AVLTreeNode<K, V>(const std::pair<K, V>& kv = std::pair<K, V>(K(), V())): _kv(kv), _parent(nullptr), _left(nullptr), _right(nullptr), _bf(0){}
};// AVL 树
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:AVLTree<K, V>(): _root(nullptr){}private:Node* _root;
};
2. AVL 树的插入
首先按照二叉搜索树的方式插入结点,保证插入结点之后还是二叉搜索树,当插入结点完成之后,该结点的祖先结点的平衡因子可能会受到影响,如果插入结点在祖先结点的左子树中,则祖先结点的 _bf --,否则该结点的 _bf ++(平衡因子的值为右子树的高度减去左子树的高度)
祖先结点的 _bf 更新后,有三种情况 _bf == 0 和 _bf == -1 || _bf == 1 以及 _bf == -2 || _bf == 2
- 当 _bf == 0 时:当前更新 _bf 的结点所在的子树高度没有变化,此时不用继续更新祖先结点的 _bf
如果插入结点在祖先结点的右子树,祖先结点的平衡因子从 -1 -> 0
如果插入结点在祖先节点的左子树,祖先结点的平衡因子从 1 -> 0
无论是这两种的那种情况,对于更新后 _bf == 0 的结点的祖先结点而言,子树的高度是没有变化的
- 当 _bf == -1 || _bf == 1 时,当前更新 _bf 的结点所在的子树高度增加了,此时需要继续更新祖先结点的 _bf
如果插入结点在祖先结点的右子树,祖先结点的平衡因子从 0 -> 1
如果插入结点在祖先节点的左子树,祖先结点的平衡因子从 0 -> -1
无论是这两种的那种情况,对于更新后 _bf == -1 || _bf == 1 的结点的祖先结点而言,子树的高度都增加了 1
- 当 _bf == -2 || _bf == 2 时,当前更新 _bf 的结点左右子树高度差超过 1 了,已经不平衡了,此时需要对该结点所在的子树进行旋转,旋转之后该结点的 _bf 会变成 0,此时也不用继续更新祖先结点的 _bf 了
旋转有四种情况:右单旋、左单旋、左单旋再右单旋、右单旋再左单旋
- 右单旋:插入结点在较高左子树的左侧
-
左单旋:插入结点在较高右子树的右侧,旋转方法类似于右单旋
-
左单旋再右单旋:插入结点在较高左子树的右侧,旋转方法类似于右单旋再左单旋
-
右单旋再左单旋:插入结点在较高右子树的左侧
// 右单旋
void RotateR(Node* parent)
{Node* pparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR) subLR->_parent = parent;subL->_right = parent;parent->_parent = subL;if (pparent == nullptr) _root = subL;else{if (pparent->_kv.first > subL->_kv.first) pparent->_left = subL;else pparent->_right = subR;}subL->_parent = pparent;
}// 左单旋
void RotateL(Node* parent)
{Node* pparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL) subRL->_parent = parent;subR->_left = parent;parent->_parent = subR;if (pparent == nullptr) _root = subR;else{if (pparent->_kv.first > subR->_kv.first) pparent->_left = subR;else pparent->_right = subR;}subR->_parent = pparent;
}// 插入
bool Insert(const std::pair<K, V>& kv)
{// 按照二叉搜索树的方式插入结点,保证该树插入结点之后还是二叉搜索树if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else return false;}cur = new Node(kv);if (parent->_kv > kv.first) parent->_left = cur;else parent->_right = cur;cur->_parent = parent;// 更新平衡因子while (parent){// 如果插入结点在祖先结点的左子树,_bf--// 如果插入结点在祖先结点的右子树,_bf++if (parent->_left == cur) parent->_bf--;else parent->_bf++;// 当 _bf == 0 时,结点所在的子树高度没有变化,不用继续更新祖先结点的 _bf// 当 _bf == -1 || _bf == 1 时,结点所在的子树高度增加 1,需要继续更新祖先结点的 _bf,最多更新到根结点// 当 _bf == -2 || _bf == 2 时,结点所在的子树不平衡了,需要对子树进行旋转,旋转之后 _bf 变为 0,也不用继续更新祖先结点的 _bf 了// 当 _bf 为其他值时,说明出大问题了if (parent->_bf == 0) break;else if (parent->_bf == -1 || parent->_bf == 1){// 继续更新parent = parent->_parent;cur = cur->_parent;}else if (parent->_bf == -2 || parent->_bf == 2){// 旋转// parent->_bf == -2 && cur->_bf == -1 右单旋// parent->_bf == 2 && cur->_bf == 1 左单旋// parent->_bf == -2 && cur->_bf == 1 左单旋再右单旋// parent->_bf == 2 && cur->_bf == -1 右单旋再左单旋// 当 _bf 为其他值时,说明出大问题了if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);parent->_bf = 0;cur->_bf = 0;}else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent); parent->_bf = 0;cur->_bf = 0;}else if (parent->_bf == -2 && cur->_bf == 1){Node* sub = cur->_right;int bf = sub->_bf;RotateL(cur);RotateR(parent);// bf == 0 sub 就是新增// bf == -1 sub 左边新增// bf == 1 sub 右边新增sub->_bf = 0;if (bf == 0){parent->_bf = 0;cur->_bf = 0;}else if (bf == -1){parent->_bf = 1;cur->_bf = 0;}else if (_bf == 1){parent->_bf = 0;cur->_bf = -1;}else assert(false);}else if (parent->_bf == 2 && cur->_bf == -1){Node* sub = cur->_left;int bf = sub->_bf;RotateR(cur);RotateL(parent);// bf == 0 sub 就是新增// bf == -1 sub 左边新增// bf == 1 sub 右边新增sub->_bf = 0;if (bf == 0){parent->_bf = 0;cur->_bf = 0;}else if (bf == -1){parent->_bf = 0;cur->_bf = 1;}else if (bf == 1){parent->_bf = -1;cur->_bf = 0;}else assert(false);}else assert(false);break;}else assert(false);}return true;
}