当前位置: 首页 > news >正文

教做美食的视频网站西安百度推广代理商

教做美食的视频网站,西安百度推广代理商,响应式网站建设对企业营销,wordpress插件 标签欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 介绍 置换检验是一种非参数统计方法,它不依赖于数据的分布形态,因此特别适…

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

置换检验是一种非参数统计方法,它不依赖于数据的分布形态,因此特别适用于小样本数据集,尤其是当样本总体分布未知或不符合传统参数检验的假设条件时。置换检验的基本思想是通过随机置换样本来评估观察到的统计量是否显著不同于随机情况下的预期值。最初真正认识置换检验是从PERMANOVA分析开始的,PERMANOVA的原理是:

  1. 原始统计量的获取: 首先计算组间距离的平方和与组内距离的平方和之间的差值。这个差值在统计学中类似于F分布统计量,用于评估组间差异的显著性。
  2. 随机置换样本: 接下来,通过随机抽取样本并重新分组,重复计算上述类似F分布的统计量。这个过程需要进行多次,例如1000次,以模拟在随机条件下可能得到的各种统计量值。
  3. 统计量分布的构建与评估: 将第二步中重复计算得到的1000个统计量值组成一个分布。然后,观察原始统计量值在这个分布中的位置。如果在显著性水平(例如0.05)的两端,即表示原始统计量值在随机情况下出现的概率较低,从而可以认为存在显著差异;如果不是,则不能拒绝原假设,即认为没有显著差异。

置换检验的应用:

置换检验方法通常用于小样本组间的比较,它不对样本的总体分布提出要求。这种方法特别适用于那些样本量较小,以至于无法使用传统的参数检验(如t检验)的情况。然而,如果使用基于简单假设检验的统计量,例如在评估两组数据差异时,首先通过t检验获得原始t统计量,然后通过置换检验重新抽取样本并计算t统计量,最后评估原始t统计量在由置换得到的t统计量分布中的位置,此时就需要考虑数据的分布特性。这种方法允许研究者在不依赖于数据分布的前提下,对统计显著性进行更为稳健的评估。

加载R包

library(tidyverse)
library(multcomp)
library(lmPerm)# rm(list = ls())
options(stringsAsFactors = F)
options(future.globals.maxSize = 1000 * 1024^2)

小样本数据案例

现有两组数据,一组是对照组,一组是实验组,它们的样本量分别是3和5,通过以下数据是否能够证实实验处理可以改善结果?

  • 对照组:73,75,78

  • 实验组:68,69,80,76,82

解题思路:T检验或Wilcox检验一般要求任意一组样本量均大于等于5较为合适,且两组样本量相差较小(非平衡数据)。该问题样本量较小,普通的假设检验不适合,可以采用置换检验(两组平均值的差值作为统计量)。具体步骤:

  1. 第一步,零假设是实验组和对照组没有任何差别;
  2. 第二步,获取原始统计量。先计算两组平均值的差值作为统计量, M 0 = 0.333 M_{0} = 0.333 M0=0.333
  3. 第三步,对照组和实验组混合后随机抽取样本组成A和B再计算两组平均值的差值,重复该过程1000次,上述1000次得到的数值组成统计量分布 M 1000 M_{1000} M1000
  4. 第四步,计算 M 1000 M_{1000} M1000大于 M 0 = 0.333 M_{0} = 0.333 M0=0.333的个数 n n n,概率 P = n / 1000 P=n/1000 P=n/1000。若 P < 0.05 P < 0.05 P<0.05则说明实验处理有助于提升结果,否则接受零假设。

自己撰写脚本

control <- c(73, 75, 78)
treatment <- c(68, 69, 80, 76, 82)permute_fun <- function(x1, x2, times = 1000) {# x1 = control# x2 = treatment# times = 1000M0 <- mean(x1) - mean(x2)x <- c(x1, x2)M_distri <- c()for (i in 1:times ) {x1_new <- sample(x, length(x1))x2_new <- sample(x, length(x2))M_temp <- mean(x1_new) - mean(x2_new)M_distri <- c(M_distri, M_temp)}dat <- data.frame(Time = 1:times,Value = M_distri)p_value <- length(M_distri[M_distri > M0]) / length(M_distri)p_label <- paste0("Pvalue = ", p_value, " (M1000 > M0)")pl <- ggplot(dat, aes(x = Value)) + geom_histogram(aes(y=..density..), binwidth=.5, color = "black", fill = "white") +geom_density(alpha=.2, fill="#FF6666") +scale_x_continuous(expand = c(0, 0)) +scale_y_continuous(expand = c(0, 0)) +labs(title = "Distribution of M statistics",x = "Mean(group1) - Mean(group2)") +geom_vline(xintercept = M0, color = "red", linetype = "dashed", linewidth = 1) +  annotate("text", label = p_label, x = 4, y = 0.14, size = 4) +theme_bw()return(pl)
}permute_fun(x1 = control, x2 = treatment)

在这里插入图片描述

结果:Pvalue > 0.05,说明实验处理对结果没有显著提升。

内置函数

除了自己撰写脚本外,还可以通过R包内置的函数实现两组置换检验。

EnvStats::twoSamplePermutationTestLocation(x = control,y = treatment,fcn = 'mean',alternative = 'greater',mu1.minus.mu2 = 0,paired = FALSE,exact = FALSE,n.permutations = 1000,seed = 123)
Results of Hypothesis Test
--------------------------Null Hypothesis:                 mu.x-mu.y = 0Alternative Hypothesis:          True mu.x-mu.y is greater than 0Test Name:                       Two-Sample Permutation TestBased on Differences in Means(Based on SamplingPermutation Distribution1000 Times)Estimated Parameter(s):          mean of x = 75.33333mean of y = 75.00000Data:                            x = control  y = treatmentSample Sizes:                    nx = 3ny = 5Test Statistic:                  mean.x - mean.y = 0.3333333P-value:                         0.497

结果:Pvalue > 0.05,说明实验处理对结果没有显著提升。

总结

  • 置换检验思想不仅仅可以用于参数未知和分布未知的小样本数据,也可以用于大样本数据(计算代价较高);

  • 置换检验也适合组间样本量不平衡的数据。

http://www.dinnco.com/news/24969.html

相关文章:

  • wordpress网站底部版权代码网站怎么做推广
  • 网站做百度竞价的标志怎么申请网址
  • 定制工作服seo优化啥意思
  • 做搜狗pc网站快速关键词在线播放免费
  • 做外销b2b网站对比无锡网站关键词推广
  • 苏州网站地址2023年适合小学生的新闻有哪些
  • 数据来源于网站怎么做参考文献营销的目的有哪些
  • 北京网站制作培训学校办公软件培训
  • 制做商品网站常州百度推广公司
  • 可以给别人做ps设计的网站莫停之科技windows优化大师
  • 网站制作怎么报价2024年8月爆发新的大流行病毒吗
  • 乌兰察布做网站公司谷歌广告联盟官网
  • 芜湖网站建设哪家好2345网址导航官网官方电脑版下载
  • mac字体怎么安装wordpress官网seo优化找哪家做
  • 企业应用平台和系统管理下载seo快排软件
  • 建微网站有什么好处刷网站关键词工具
  • 登录企业网站管理系统网络推广员工作好做吗
  • 家装网站建设市场调研的四个步骤
  • design设计网站外链平台
  • 洛阳外贸网站建设今天国内新闻10条
  • 万网域名注册教程富阳网站seo价格
  • wp用户前端化专业版wordpress插件[中英双语]长沙seo公司排名
  • 做建筑的网站山东网页定制
  • 无锡网站制作系统seo黑帽培训骗局
  • 做网站模板在哪儿找宁波seo优化公司
  • 市体育局网站 两学一做最新的全国疫情
  • 网站建站的步骤找营销推广团队
  • 支付网站备案成都疫情最新消息
  • 北京做网站推广seo电脑培训学校
  • 网站优化及推广seo在线网站推广