中山网站建设外包站长素材网
【LetMeFly】3242.设计相邻元素求和服务:哈希表
力扣题目链接:https://leetcode.cn/problems/design-neighbor-sum-service/
给你一个 n x n
的二维数组 grid
,它包含范围 [0, n2 - 1]
内的不重复元素。
实现 neighborSum
类:
neighborSum(int [][]grid)
初始化对象。int adjacentSum(int value)
返回在grid
中与value
相邻的元素之和,相邻指的是与value
在上、左、右或下的元素。int diagonalSum(int value)
返回在grid
中与value
对角线相邻的元素之和,对角线相邻指的是与value
在左上、右上、左下或右下的元素。
示例 1:
输入:
["neighborSum", "adjacentSum", "adjacentSum", "diagonalSum", "diagonalSum"]
[[[[0, 1, 2], [3, 4, 5], [6, 7, 8]]], [1], [4], [4], [8]]
输出: [null, 6, 16, 16, 4]
解释:
- 1 的相邻元素是 0、2 和 4。
- 4 的相邻元素是 1、3、5 和 7。
- 4 的对角线相邻元素是 0、2、6 和 8。
- 8 的对角线相邻元素是 4。
示例 2:
输入:
["neighborSum", "adjacentSum", "diagonalSum"]
[[[[1, 2, 0, 3], [4, 7, 15, 6], [8, 9, 10, 11], [12, 13, 14, 5]]], [15], [9]]
输出: [null, 23, 45]
解释:
- 15 的相邻元素是 0、10、7 和 6。
- 9 的对角线相邻元素是 4、12、14 和 15。
提示:
3 <= n == grid.length == grid[0].length <= 10
0 <= grid[i][j] <= n2 - 1
- 所有
grid[i][j]
值均不重复。 adjacentSum
和diagonalSum
中的value
均在范围[0, n2 - 1]
内。- 最多会调用
adjacentSum
和diagonalSum
总共2 * n2
次。
解题方法:哈希表
使用哈希表记录每个值的adjacentSum和diagonalSum,查询操作的时候直接去哈希表里查询就可以了。
- 时间复杂度:初始化 O ( n 2 ) O(n^2) O(n2)单次查询 O ( 1 ) O(1) O(1)
- 空间复杂度:初始化 O ( n 2 ) O(n^2) O(n2)单次查询 O ( 1 ) O(1) O(1)
AC代码
C++
const int adj[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
const int dia[4][2] = {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}};class NeighborSum {
private:vector<pair<int, int>> cache;
public:NeighborSum(vector<vector<int>>& grid) {int n = grid.size();cache.resize(n * n);for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {int cntAdj = 0, cntDia = 0;for (int k = 0; k < 4; k++) {int x = i + adj[k][0], y = j + adj[k][1];if (x >= 0 && x < n && y >= 0 && y < n) {cntAdj += grid[x][y];}x = i + dia[k][0], y = j + dia[k][1];if (x >= 0 && x < n && y >= 0 && y < n) {cntDia += grid[x][y];}}cache[grid[i][j]] = {cntAdj, cntDia};}}}int adjacentSum(int value) {return cache[value].first;}int diagonalSum(int value) {return cache[value].second;}
};
Python
from typing import Listdirection = [[-1, 0], [1, 0], [0, -1], [0, 1], [-1, -1], [1, 1], [-1, 1], [1, -1]]class NeighborSum:def __init__(self, grid: List[List[int]]):n = len(grid)self.cache = [[0, 0] for _ in range(n * n)]for i in range(n):for j in range(n):for th, (x, y) in enumerate(direction):if 0 <= x + i < n and 0 <= y + j < n:self.cache[grid[i][j]][th // 4] += grid[x + i][y + j]def adjacentSum(self, value: int) -> int:return self.cache[value][0]def diagonalSum(self, value: int) -> int:return self.cache[value][1]
Java
class NeighborSum {private static final int[][] direction = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};private int[][] cache;public NeighborSum(int[][] grid) {int n = grid.length;cache = new int[n * n][2];for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {for (int k = 0; k < 8; k++) {int x = i + direction[k][0], y = j + direction[k][1];if (x >= 0 && x < n && y >= 0 && y < n) {cache[grid[i][j]][k / 4] += grid[x][y];}}}}}public int adjacentSum(int value) {return cache[value][0];}public int diagonalSum(int value) {return cache[value][1];}
}
Go
package mainvar direction = []struct{x, y int}{{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}
type Value [][2]inttype NeighborSum struct {cache Value
}func Constructor(grid [][]int) NeighborSum {n := len(grid)var neighborSum NeighborSumneighborSum.cache = make(Value, n * n)for i, row := range grid {for j, v := range row {for k, d := range direction {x, y := i + d.x, j + d.yif x >= 0 && x < n && y >= 0 && y < n {neighborSum.cache[v][k / 4] += grid[x][y]}}}}return neighborSum
}func (this *NeighborSum) AdjacentSum(value int) int {return this.cache[value][0]
}func (this *NeighborSum) DiagonalSum(value int) int {return this.cache[value][1]
}
同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/143698347