当前位置: 首页 > news >正文

天美传媒传媒官网免费下载沈阳高端关键词优化

天美传媒传媒官网免费下载,沈阳高端关键词优化,网站开发文案,wordpress视频无法播放器©PaperWeekly 原创 作者 | 苏剑林 单位 | 科学空间 研究方向 | NLP、神经网络 对于 LLM 来说,通过增大 Tokenizer 的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大 Embedding 层和…

bf42b09cdbee4ccf6b48d86e41b8a553.gif

©PaperWeekly 原创 · 作者 | 苏剑林

单位 | 科学空间

研究方向 | NLP、神经网络

对于 LLM 来说,通过增大 Tokenizer 的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大 Embedding 层和输出的 Dense 层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。

当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。

86ca52ab8f089cf97cd4699c6151b534.png

优劣分析

增加词表大小的好处是显而易见的。一方面,由于 LLM 是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的 tokens 数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是 Teacher Forcing,缩短序列长度能够缓解 Teacher Forcing 带来的 Exposure Bias 问题,从而可能提升模型效果。

不过增大词表的缺点也很明显,最直接的就是会割裂 token 与 token 之间在字符层面之间的联系,从而可能会影响泛化,甚至会损失做某些任务的能力。比如“太阳能”和“太阳”都是词表中的一个词的话,模型是不知道“太阳能”是由“太阳”和“能”组成,也不知道“太阳”是“太”和“阳”,这样如果要做一些子词相关的任务就会比较艰难,比如最经典的问“‘太阳能’反过来怎么读?”,期望回答时“能阳太”,但由于模型不知道它是“太”、“阳”、“能”三个字组成,从而很难回答正确。

f681f650e9afefc91a374191f00e60aa.png

续写问题

近日 @Armen Aghajanyan 分享了另一个问题。他们在训练代码模型时使用了超大词表,结果就是常见的命令如 “import numpy as np” 都变成了一个 token,然后发现当用户输入 “import numpy” 时,模型无法续写出 “as np”。原因很简单,“import numpy as np” 被当作了一个 token,于是当 “import numpy” 单独出现时,模型会发现它后面永远不会接 “as np”(接 “as np” 的都被合并成单独的 “import numpy as np” 了),自然也无法完成续写。

这个现象确实很经典,其实不单是代码模型,常见的自然语言模型也会出现。比如当“太阳能”和“太阳”都成为了一个独立的 token 时,用户输入“太阳”后,接下来续写的字就基本不会是“能”了,这可能不符合用户的分布期望;又比如“白云”、“白云山”、“白云机场”都是一个独立的 token 时,用户输入“广州的白云”后,接下来也几乎不会续写出“广州的白云机场”、“广州的白云山”,等等。

69b537b533daa99430ae8854e43c27ae.png

参考对策

然而,笔者认为 Armen Aghajanyan 所提的现象,并不能构成增大词表的缺点,反而稍微处理一下之后,它还有可能成为增大词表的优点。其实这个问题很简单,以前没有 LLM 的时候,基于“词表+前缀搜索”我们也能做一定的补全任务,现在有了 LLM,难道我们就一定要囿于 LLM,不能将基于 LLM 的续写和基于词表的续写结合起来吗?

还是刚才的例子,假设用户输入了“广州的白云”,Tokenizer 将它分为“广州/的/白云”,现在如果将这三个词直接转为 id 输入到模型中,就会无法续写出“广州/的/白云机场”等结果。

这本质上是因为 Tokenizer 无法提前预估未来的文本,从而导致分词结果出错(当然,也可以考虑在训练阶段就使用带有随机性的 tokenize 算法,这种情况下“白云机场”可能作为一个词出现,也可能作为“白云/机场”出现,此时分词结果不至于严重影响后续效果,甚至能增强泛化能力,参考《Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates》)。

那么,我们是否可以预估一下未来的文本呢?假设分词为“广州/的/白云”后,我们回退一步,拿“白云”去词表做前缀搜索,不妨再假设搜索结果为“白云”、“白云机场”、“白云山”、“白云路”四个词,这步搜索是纯粹基于词表做的,相比 LLM 的计算量可以忽略不计。有了搜索结果后,我们用 LLM 计算:

d2853b822bb3a41f4ae8339282213b9d.png

由于输入都是相同的,所以计算这四个条件概率只需要运行一次 LLM。有了这四个条件概率后,我们将它们重新归一化然后进行采样。假如采样结果是“白云”,那么我们就按照“广州/的/白云”来做续写;如果采样到“白云机场”,那么就可以输出“机场”,并按照“广州/的/白云机场”来做续写;依此类推。

这就轻松解决了 Armen Aghajanyan 所提到的问题,并且将缺点转化为优点了(压缩率高时,即便回退了一步,但是前缀搜索出来的词可能很长,可以一次性生成更多的字)。特别地,回退操作只需要在采样第一步进行,它只是为了避免输入不完整导致的分词错误,从第二步开始就不需要回退操作了,因此新增的计算量是非常少的。

值得一提的是,微软有一个名为 “guidance” 的库,也提出了同样的技巧(参考这里)。此外,考虑更一般的场景,有时候回退一步也不够,比如 “import numpy as np” 的例子,单输入 “import numpy” 时,可能被分为 “import/ numpy” 了,这时候起码要回退两步才能完整合理的序列。但这没有本质的区别,只是细节上稍微复杂一些,这里就不展开了,读者部署推理模型的时候自行构造就好。

fb8a346bad9cc46de221662dfc1a8555.png

文章小结

本文介绍了超大词表的 LLM 在做文本续写任务时可能出现的一个问题,并分享了参考的解决方案。

outside_default.png

参考文献

outside_default.png

[1] https://arxiv.org/abs/1804.10959

[2] https://github.com/guidance-ai/guidance#token-healing-notebook

更多阅读

ba29e5d532daf5d517f5fc38c37b0e6e.png

877be88b1c9b473473b6c18046643a11.png

5eeacdafc00a73793c96dd5c6be9a686.png

56b7546647bcc7c5157d1595e3e4483f.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

fd6e8a4457c6ee9bc8c673dda1ac0637.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

cea955ab1655285e9f497fd655ebb5a4.jpeg

http://www.dinnco.com/news/32965.html

相关文章:

  • 刷赞网站推广qq免费郑州seo排名优化公司
  • 做竞价网站访问突然变少重庆seo网站推广费用
  • 新乡网站建设搜狗引擎搜索
  • 网站建设模板成功案例山东网络优化公司排名
  • 网站建设案例分享世界500强企业排名
  • 学校网站建设都是谁做的百度竞价广告
  • 建设公司网站的意义elo机制
  • 长春站是火车站还是高铁站东莞网站建设公司排名
  • 桂林 门户网站合肥网络推广服务
  • 一键免费搭建手机网站yahoo搜索引擎
  • 下饶网站建设东莞整站优化
  • 中国数学外国人做视频网站sem是什么的缩写
  • 有哪些网站做电子元器件比较好seo常规优化
  • 长沙市建设网站平台的公司淘宝推广引流方法有哪些
  • 自己做的网站如何上传福建seo排名
  • 小说网站 做百度联盟网站浏览器
  • 上海网站建设哪谷歌seo营销
  • 山东青岛网站设计写软文怎么接单子
  • 锦州网站开发建设西安seo网站关键词
  • 宿州网站建设时间百度友情链接
  • 山东济宁做网站的公司郑州百度推广外包
  • 昆明岭蓝科技seo内容优化心得
  • 东台做网站的公司东莞优化排名推广
  • 学校网站建设全包论坛发帖
  • 网站设计高大上业务推广网站
  • 邯郸哪家公司做企业网站比较专业合肥网络推广
  • 网上销售 网站建设小程序制作费用一览表
  • 中国有兼职网站开发网站吗武汉网络关键词排名
  • 网站的设计方法有哪些营销咨询公司经营范围
  • 上国外网站速度慢宁波seo网络推广优质团队