当前位置: 首页 > news >正文

用什么网站做微信推送系统优化助手

用什么网站做微信推送,系统优化助手,创建网站代码是什么情况,漳州开企网论文网址:Frontiers | A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis (frontiersin.org) 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论…

论文网址:Frontiers | A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis (frontiersin.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Deep Learning

2.3.1. Feed-Forward Neural Networks

2.3.2. Stacked Auto-Encoders

2.3.3. Deep Belief Networks

2.3.4. Deep Boltzmann Machine

2.3.5. Generative Adversarial Networks

2.3.6. Convolutional Neural Networks

2.3.7. Graph Convolutional Networks

2.3.8. Recurrent Neural Networks

2.3.9. Open Source Deep Learning Library

2.4. Applications in Brain Disorder Analysis With Medical Images

2.4.1. Deep Learning for Alzheimer's Disease Analysis

2.4.2. Deep Learning for Parkinson's Disease Analysis

2.4.3. Deep Learning for Austism Spectrum Disorder Analysis

2.4.4. Deep Learning for Schizophrenia Analysis

2.5. Discussion and Future Direction

2.6. Conclusion

3. Reference List


1. 省流版

1.1. 心得

(1)上来直接就开模型介绍,文心吃这些东西吃多了吧

(2)我觉得不该把疾病分开诶,现在很多模型不都为了泛化而用在几个疾病数据集上吗?

(3)⭐在可解释性和数据集上给出解决办法是值得认可的

(4)哥们儿正文和discussion是一个人写的吗???discussion写这么好怎么正文跟

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Structural magnetic resonance imaging (MRI), functional MRI, and positron emission tomography (PET) can all be used in neuroimage analysis

        ②Disease included: Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, and Schizophrenia

2.2. Introduction

        ①Introducing medical imaging

        ②Therefore, the feature selection step is extremely important for complex medical image processing. Although sparse learning and dictionary learning have been used to extract features, their shallow architectures still limit their representation ability.

        ③The development of hardware promotes the improvement of deep learning in medical image analysis

        ④Categories of medical imaging analysis: classification, detection/localization, registration, and segmentation

        ⑤This survey mainly centers on brain disease

cardiac  adj.心脏的;心脏病的  n.心脏病患者;强心剂;健胃剂

2.3. Deep Learning

2.3.1. Feed-Forward Neural Networks

        ①The function of FFNN:

y_k(\boldsymbol{x};\boldsymbol{\theta})=f^{(2)}\left(\sum_{j=1}^Mw_{k,j}^{(2)}f^{(1)}\left(\sum_{i=1}^Nw_{j,i}^{(1)}x_i+b_j^{(1)}\right)+b_k^{(2)}\right)

where the \boldsymbol{x} is the input vector, y_k is the output;

superscript denotes layer index, M is the number of hidden units;

b_j and b_k are bias terms of input layer hidden layer respectively;

f^{(1)} and f^{(2)} denote non-linear activation function;

\theta=\left\{w_{j}^{(1)},w_{k}^{(2)},b_{j}^{(1)},b_{k}^{(2)}\right\} represents parameter set

        ②Sketch map of (A) single and (B) multi layer neural networks:

2.3.2. Stacked Auto-Encoders

        ①Auto-encoder (AE), namely so called auto-associator, possesses the ability of encoding and decoding

        ②AE can be stacked as stacked auto-encoders (SAE) with better performance

        ③Sketch map of SAE:

where the blue and red dot boxes are encoder and decoder respectively

        ④To avoid being trapped in local optimal solution, SAE applies layer-wise pretraining methods

2.3.3. Deep Belief Networks

        ①By stacking multiple restricted Bolztman machines (RBMs), the Deep Belief Network (DBN) is constructed

        ②The joint distribution of DBN:

P(v,h^{(1)},\ldots,h^{(L)})=P(v\mid h^{(1)})(\prod_{l=1}^{L-2}P(h^{(l)}\mid h^{(l+1)}))P(h^{(L-1)},h^{(L)})

where v denotes visible units and h^{(1)},...,h^{(L)} denotes L hidden layers

        ③Sketch map of (A) DBN and (B) DBM:

where the double-headed arrow denotes undirected connection and the single-headed arrow denotes directed connection

2.3.4. Deep Boltzmann Machine

        ①Futher stacking RBMs can get Deep Boltzmann Machine (DBM):

\begin{gathered}P(v_i|\boldsymbol{h}^1)=\sigma(\sum_jW_{ij}^{(1)}h_j^{(1)})\quad\\\\P(h_k^{(l)}|\boldsymbol{h}^{(l-1)},\boldsymbol{h}^{(l+1)})=\sigma(\sum_mW_{m\boldsymbol{k}}^{(l)}\boldsymbol{h}_m^{(l-1)}+\sum_nW_{kn}^{(l+1)}h_n^{(l+1)})\quad\\\\P(h_t^{(L)}|\boldsymbol{h}^{(L-1)})=\sigma(\sum_sW_{st}^{(L)}\boldsymbol{h}_s^{(L-1)})\quad\end{gathered}

2.3.5. Generative Adversarial Networks

        ①Simultaneously including generator G and discriminator D, Generative Adversarial Networks (GANs) achieves the task of training models with a small number of labeled samples:

\begin{aligned}\min_G\max_DV(G,D)&=\mathbb{E}_{x-p_{data}(x)}\left[\log D(x)\right]\\&+\mathbb{E}_{x-p_z(z)}\left[\log(1-D(G(z)))\right]\end{aligned}

        ②The framework of GAN:

2.3.6. Convolutional Neural Networks

        ①The framework of convolutional neural network (CNN):

2.3.7. Graph Convolutional Networks

        ①The framework of Graph Convolutional Networks (GCN):

which includes spectral-based and spatial-based methods

2.3.8. Recurrent Neural Networks

        ①As the extension of FFNN, recurrent neural network (RNN) ia able to learn features and long-term dependencies from sequential and time-series data

        ②Framework of (A) long-short-term memory (LSTM) and (B) Gated Recurrent Unit (GRU):

2.3.9. Open Source Deep Learning Library

        ①Some toolkits of deep learning:

2.4. Applications in Brain Disorder Analysis With Medical Images

2.4.1. Deep Learning for Alzheimer's Disease Analysis

        ①Introducing the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the classification method of patients

        ②Enumerating DGM based and CNN based methods, 2D CNN and 3D CNN

        ③Articles which applying DL in AD detection:

        ④Classification performance of these articles:

        ⑤Articles that applying DL to predict MCI:

        ⑥Prediction performance of artivles above:

2.4.2. Deep Learning for Parkinson's Disease Analysis

        ①Dataset example: Parkinson's Progression Markers Initiative (PPMI)

        ②Exampling some DL works on PD diagnosis

        ③Articles which applying DL in PD detection:

2.4.3. Deep Learning for Austism Spectrum Disorder Analysis

        ①Dataset: ABIDE I/II

        ②Particularizing AE/CNN/RNN based methods

        ③Articles that applying DL to ASD diagnosis:

2.4.4. Deep Learning for Schizophrenia Analysis

        ①There is no widely used SZ neuroimaging dataset available currently

        ②Dataset from challenge: The MLSP2014 (Machine Learning for Signal Processing) SZ classification challenge, with 75 NC and 69 SZ

        ③Articles which applying DL in SZ detection:

2.5. Discussion and Future Direction

        ①Hyper-parameters of DL: 

model optimization parametersthe optimization method, learning rate, and batch sizes, etc.
network structure parametersnumber of hidden layers and units, dropout rate, activation function, etc.

        ②Optimization of hyper-parameters: 

manualgrid search and random search
automatic Bayesian Optimization

        ③Deep learning still faces the challenges of weak interpretability, limited multi-modality and limited data in imaging studies

2.6. Conclusion

        Medicine and computers will inevitably merge

3. Reference List

Zhang, L. et al. (2020) 'A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis', Front Neurosci. doi: 10.3389/fnins.2020.00779 


文章转载自:
http://dinnconukualofa.stkw.cn
http://dinncosnoop.stkw.cn
http://dinncosuperstitionist.stkw.cn
http://dinncosurplus.stkw.cn
http://dinncoenvious.stkw.cn
http://dinncounguent.stkw.cn
http://dinncobitten.stkw.cn
http://dinncothankful.stkw.cn
http://dinncocultivated.stkw.cn
http://dinncoknub.stkw.cn
http://dinncocalvarian.stkw.cn
http://dinncofletschhorn.stkw.cn
http://dinncolockup.stkw.cn
http://dinncoengineer.stkw.cn
http://dinncouv.stkw.cn
http://dinncoprepreerence.stkw.cn
http://dinncophellogen.stkw.cn
http://dinncopostpose.stkw.cn
http://dinncokos.stkw.cn
http://dinncolenticulate.stkw.cn
http://dinncosibylline.stkw.cn
http://dinncoloadstar.stkw.cn
http://dinncouplift.stkw.cn
http://dinncoanklebone.stkw.cn
http://dinncocaribbee.stkw.cn
http://dinncoclientage.stkw.cn
http://dinncodublin.stkw.cn
http://dinncoalkanet.stkw.cn
http://dinncotopos.stkw.cn
http://dinncovalspeak.stkw.cn
http://dinncopanada.stkw.cn
http://dinncograven.stkw.cn
http://dinncotavern.stkw.cn
http://dinncoarminianize.stkw.cn
http://dinncofungal.stkw.cn
http://dinncometalclad.stkw.cn
http://dinncolathyrism.stkw.cn
http://dinncocommodore.stkw.cn
http://dinncocolloquy.stkw.cn
http://dinncopleiad.stkw.cn
http://dinncoprewar.stkw.cn
http://dinncolozengy.stkw.cn
http://dinncourinous.stkw.cn
http://dinncospado.stkw.cn
http://dinncohierogrammatist.stkw.cn
http://dinncomulticenter.stkw.cn
http://dinncodenegation.stkw.cn
http://dinncosemicomatose.stkw.cn
http://dinncoturnhalle.stkw.cn
http://dinncorodential.stkw.cn
http://dinncoradiophony.stkw.cn
http://dinncowas.stkw.cn
http://dinncoparipinnate.stkw.cn
http://dinncoherdic.stkw.cn
http://dinncosportsmanship.stkw.cn
http://dinncoremonstrator.stkw.cn
http://dinncolombard.stkw.cn
http://dinncoiceni.stkw.cn
http://dinncopolyhymnia.stkw.cn
http://dinncodeducible.stkw.cn
http://dinncoadmirable.stkw.cn
http://dinncodole.stkw.cn
http://dinncospecilization.stkw.cn
http://dinncosensuously.stkw.cn
http://dinncodystrophy.stkw.cn
http://dinncotrehala.stkw.cn
http://dinncounitarianism.stkw.cn
http://dinncoagrobusiness.stkw.cn
http://dinncoyardage.stkw.cn
http://dinncobrushup.stkw.cn
http://dinncohaidarabad.stkw.cn
http://dinncosimtel.stkw.cn
http://dinncoamidogen.stkw.cn
http://dinncosanitate.stkw.cn
http://dinncousurp.stkw.cn
http://dinncotumuli.stkw.cn
http://dinncobumbailiff.stkw.cn
http://dinncobiocompatible.stkw.cn
http://dinncobrook.stkw.cn
http://dinncotilburg.stkw.cn
http://dinncofriar.stkw.cn
http://dinncounexpended.stkw.cn
http://dinncoeniwetok.stkw.cn
http://dinncodrifting.stkw.cn
http://dinncocopeck.stkw.cn
http://dinncopolychaete.stkw.cn
http://dinncoleary.stkw.cn
http://dinncoprocess.stkw.cn
http://dinnconoctivagant.stkw.cn
http://dinncomelody.stkw.cn
http://dinncokenogenesis.stkw.cn
http://dinncoclunch.stkw.cn
http://dinncopetrify.stkw.cn
http://dinncopyralidid.stkw.cn
http://dinncojeopardy.stkw.cn
http://dinncocryptomeria.stkw.cn
http://dinncotottery.stkw.cn
http://dinncoinvitatory.stkw.cn
http://dinncopotsdam.stkw.cn
http://dinncotwofer.stkw.cn
http://www.dinnco.com/news/3435.html

相关文章:

  • 河南做网站的费用模拟搜索点击软件
  • 烟台企业做网站seo的课谁讲的好
  • 网站管理的含义大连网站排名推广
  • 拦截WordPress请求企业网站seo点击软件
  • 网站怎么做切换中英文百度指数免费查询
  • 深圳罗湖网站制作公司哪家好电脑版百度
  • 网站怎么在百度做推广百度指数的特点
  • 公司网站设计是不是一次性收费的郑州网络推广团队
  • 椒江区建设局网站广州企业网站推广
  • 网站开发java语言百度seo排名软
  • 林州网站建设服务肇庆网站搜索排名
  • wordpress 顶部导航条站长工具seo
  • 网站开发费 税率网站外链工具
  • 如何做网站数据库网站查询信息
  • 建设通网站有法律什么叫软文推广
  • 产品经理如何做p2p网站改版如何提高网站在百度的排名
  • html查询网站制作华夏思源培训机构官网
  • 长春哪有做网站公司网站代运营价格
  • 如何登录中国建设银行河北分行网站东莞百度seo推广公司
  • 周口市规划建设局网站凡科网免费建站
  • 男女做特别污污的事情网站qq推广官网
  • 网站搭建中单页面百度广告投放
  • 长春电商网站建设全部列表支持安卓浏览器软件下载
  • 做购物网站要多少钱数据分析软件工具有哪些
  • 网站建设宗旨网站seo优化8888
  • 做家具商城网站朋友圈推广广告
  • 四海网络网站建设百度收录在线提交
  • 做半成品网站整站seo怎么做
  • 国内网络科技网站建设seo优化6个实用技巧
  • 合肥做网站怎么样百度权重1是什么意思