当前位置: 首页 > news >正文

做公司网站视频百度关键词搜索热度

做公司网站视频,百度关键词搜索热度,厦门购买域名以后搭建网站,怎么查看网站虚拟空间目录 概述为什么需要接口访问频率限制常见的实现方式 基于过滤器的实现基于拦截器的实现基于第三方库Bucket4j的实现 实际代码示例 基于过滤器实现Rate Limiting基于拦截器实现Rate Limiting使用Bucket4j实现Rate Limiting 最佳实践 选择合适的限流算法优化性能记录日志和监控…

目录

  1. 概述
  2. 为什么需要接口访问频率限制
  3. 常见的实现方式
    • 基于过滤器的实现
    • 基于拦截器的实现
    • 基于第三方库Bucket4j的实现
  4. 实际代码示例
    • 基于过滤器实现Rate Limiting
    • 基于拦截器实现Rate Limiting
    • 使用Bucket4j实现Rate Limiting
  5. 最佳实践
    • 选择合适的限流算法
    • 优化性能
    • 记录日志和监控
  6. 总结

概述

接口访问频率限制是通过在一定时间内限制用户对接口的访问次数来实现的。常见的限流算法包括令牌桶算法(Token Bucket)、漏桶算法(Leaky Bucket)、固定窗口计数器(Fixed Window Counter)和滑动窗口计数器(Sliding Window Counter)等。在Spring Boot中,我们可以通过多种方式来实现接口的限流,如使用过滤器、拦截器或者借助第三方库。

为什么需要接口访问频率限制

  1. 防止恶意攻击:通过限制接口的访问频率,可以有效防止恶意用户或机器人频繁访问接口,导致系统资源耗尽。
  2. 提升系统稳定性:在高并发场景下,限流可以有效保护后端服务,避免因流量过大而导致系统崩溃。
  3. 提升用户体验:合理的限流可以保障所有用户都能获得较好的服务质量,避免个别用户过度使用资源。

常见的实现方式

基于过滤器的实现

过滤器是Java Web应用中常用的一种组件,它可以在请求到达Servlet之前对请求进行预处理。通过在过滤器中实现限流逻辑,可以对所有的HTTP请求进行统一的限流控制。

基于拦截器的实现

拦截器是Spring框架提供的一种处理器,可以在请求处理之前和之后进行相关操作。相比于过滤器,拦截器可以更加细粒度地控制请求,适用于需要针对某些特定接口进行限流的场景。

基于第三方库Bucket4j的实现

Bucket4j是一个Java实现的高性能限流库,它支持多种限流算法,如令牌桶算法。通过使用Bucket4j,可以轻松地在Spring Boot应用中实现复杂的限流逻辑,并且它还提供了丰富的配置选项和统计功能。

实际代码示例

基于过滤器实现Rate Limiting

首先,我们需要创建一个自定义的过滤器类,并在其中实现限流逻辑。以下是一个示例代码:

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.TimeUnit;public class RateLimitingFilter implements Filter {private final ConcurrentMap<String, Long> requestCounts = new ConcurrentHashMap<>();private static final long ALLOWED_REQUESTS_PER_MINUTE = 60;@Overridepublic void init(FilterConfig filterConfig) throws ServletException {// 初始化过滤器}@Overridepublic void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {HttpServletRequest httpRequest = (HttpServletRequest) request;HttpServletResponse httpResponse = (HttpServletResponse) response;String clientIp = httpRequest.getRemoteAddr();long currentTimeMillis = System.currentTimeMillis();requestCounts.putIfAbsent(clientIp, currentTimeMillis);long lastRequestTime = requestCounts.get(clientIp);if (TimeUnit.MILLISECONDS.toMinutes(currentTimeMillis - lastRequestTime) < 1) {long requestCount = requestCounts.values().stream().filter(time -> TimeUnit.MILLISECONDS.toMinutes(currentTimeMillis - time) < 1).count();if (requestCount > ALLOWED_REQUESTS_PER_MINUTE) {httpResponse.setStatus(HttpServletResponse.SC_TOO_MANY_REQUESTS);httpResponse.getWriter().write("Too many requests");return;}}requestCounts.put(clientIp, currentTimeMillis);chain.doFilter(request, response);}@Overridepublic void destroy() {// 销毁过滤器}
}

然后,在Spring Boot应用的配置类中注册这个过滤器:

import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FilterConfig {@Beanpublic FilterRegistrationBean<RateLimitingFilter> loggingFilter(){FilterRegistrationBean<RateLimitingFilter> registrationBean = new FilterRegistrationBean<>();registrationBean.setFilter(new RateLimitingFilter());registrationBean.addUrlPatterns("/api/*");return registrationBean;}
}

基于拦截器实现Rate Limiting

首先,我们需要创建一个自定义的拦截器类,并在其中实现限流逻辑。以下是一个示例代码:

import org.springframework.web.servlet.HandlerInterceptor;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.TimeUnit;public class RateLimitingInterceptor implements HandlerInterceptor {private final ConcurrentMap<String, Long> requestCounts = new ConcurrentHashMap<>();private static final long ALLOWED_REQUESTS_PER_MINUTE = 60;@Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {String clientIp = request.getRemoteAddr();long currentTimeMillis = System.currentTimeMillis();requestCounts.putIfAbsent(clientIp, currentTimeMillis);long lastRequestTime = requestCounts.get(clientIp);if (TimeUnit.MILLISECONDS.toMinutes(currentTimeMillis - lastRequestTime) < 1) {long requestCount = requestCounts.values().stream().filter(time -> TimeUnit.MILLISECONDS.toMinutes(currentTimeMillis - time) < 1).count();if (requestCount > ALLOWED_REQUESTS_PER_MINUTE) {response.setStatus(HttpServletResponse.SC_TOO_MANY_REQUESTS);response.getWriter().write("Too many requests");return false;}}requestCounts.put(clientIp, currentTimeMillis);return true;}
}

然后,在Spring Boot应用的配置类中注册这个拦截器:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;@Configuration
public class WebConfig implements WebMvcConfigurer {@Autowiredprivate RateLimitingInterceptor rateLimitingInterceptor;@Overridepublic void addInterceptors(InterceptorRegistry registry) {registry.addInterceptor(rateLimitingInterceptor).addPathPatterns("/api/**");}
}

使用Bucket4j实现Rate Limiting

首先,在项目中引入Bucket4j依赖:

<dependency><groupId>com.github.vladimir-bukhtoyarov</groupId><artifactId>bucket4j-core</artifactId><version>7.0.0</version>
</dependency>

然后,创建一个自定义的过滤器类,并在其中实现限流逻辑:

import io.github.bucket4j.Bandwidth;
import io.github.bucket4j.Bucket;
import io.github.bucket4j.Bucket4j;
import io.github.bucket4j.Refill;import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.time.Duration;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;public class Bucket4jRateLimitingFilter implements Filter {private final ConcurrentMap<String, Bucket> buckets = new ConcurrentHashMap<>();@Overridepublic void init(FilterConfig filterConfig) throws ServletException {// 初始化过滤器}@Overridepublic void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {HttpServletRequest httpRequest = (HttpServletRequest) request;HttpServletResponse httpResponse = (HttpServletResponse) response;String clientIp = httpRequest.getRemoteAddr();Bucket bucket = buckets.computeIfAbsent(clientIp, this::newBucket);if (bucket.tryConsume(1)) {chain.doFilter(request, response);} else {httpResponse.setStatus(HttpServletResponse.SC_TOO_MANY_REQUESTS);httpResponse.getWriter().write("Too many requests");}}private Bucket newBucket(String clientIp) {return Bucket4j.builder().addLimit(Bandwidth.classic(60, Refill.greedy(60, Duration.ofMinutes(1)))).build();}@Overridepublic void destroy() {// 销毁过滤器}
}

然后,在Spring Boot应用的配置类中注册这个过滤器:

import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FilterConfig {@Beanpublic FilterRegistrationBean<Bucket4jRateLimitingFilter> loggingFilter(){FilterRegistrationBean<Bucket4jRateLimitingFilter> registrationBean = new FilterRegistrationBean<>();registrationBean.setFilter(new Bucket4jRateLimitingFilter());registrationBean.addUrlPatterns("/api/*");return registrationBean;}
}

最佳实践

选择合适的限流算法

根据实际业务需求选择合适的限流算法,例如:

  • 令牌桶算法:适用于需要平滑突发流量的场景。
  • 漏桶算法:适用于需要严格控制流量的场景。
  • 固定窗口计数器:适用于对简单限流要求的场景。
  • 滑动窗口计数器:适用于需要精确控制限流的场景。

优化性能

  • 减少锁竞争:在高并发环境下,尽量减少锁的使用,可以采用无锁数据结构或者线程安全的数据结构。
  • 缓存结果:对于频繁访问的数据,可以考虑进行缓存,减少数据库查询的次数。
  • 异步处理:对于耗时的操作,可以考虑采用异步处理,提高系统的响应速度。

记录日志和监控

  • 记录访问日志:记录每次接口访问的详细信息,包括请求时间、IP地址、请求路径等。
  • 监控限流情况:对限流情况进行监控,及时发现和处理异常流量。
  • 报警机制:设置限流报警机制,当流量超过预设阈值时,及时报警。

总结

本文详细介绍了在Spring Boot中实现接口访问频率限制的几种方法,包括基于过滤器、拦截器和第三方库Bucket4j的实现。通过合理的限流策略,可以有效防止恶意攻击,提升系统的稳定性和用户体验。在实际应用中,选择合适的限流算法和实现方式,并结合业务需求进行优化,是确保系统高效运行的关键。

希望本文能够帮助你更好地理解和实现Spring Boot中的接口访问频率限制。如果你有任何问题或建议,欢迎在评论区留言讨论。

http://www.dinnco.com/news/3684.html

相关文章:

  • 合优网人才招聘信息南昌seo推广公司
  • 常州网络推广平台网站优化建议怎么写
  • 互联网创意网站有哪些网推接单平台
  • 广州网站建设多少钱网站推广怎样做
  • 武汉市建设信息中心网站功能优化
  • 网站关键词推广企业万网域名续费
  • 营业执照办好了就可以做网站了吗网络推广如何收费
  • 静安微信手机网站制作收录网站有哪些
  • 织梦手机网站制作学电脑培训班
  • 深圳建站推广公司在线工具seo
  • 一品威客官方网站宁波超值关键词优化
  • 精选微信网站建设网站检测中心
  • 视频优化网站怎么做整合营销传播策略
  • wordpress地址和站点地址展示型网站有哪些
  • 网站论坛怎么建设什么都不懂能去干运营吗
  • 百度广州分公司容易进吗aso优化工具
  • 网站建设与维护案列深圳最好seo
  • 建筑公司网站广告宣传语网络公司排名
  • asp网站下用php栏目优化网站内容的方法
  • 做网站云服务器还是云虚拟主机营销策划培训
  • 网站制作经典案例做一个公司网站要多少钱
  • 初中做网站软件网络营销推广工具有哪些?
  • 企业制作企业网站百度快速收录seo工具软件
  • 上海网站建设-中国互联百度优选官网
  • 网站服务器地址查询方法百度公司高管排名
  • 项目计划书封面湖南seo
  • 电子商务网站建设的意义是什么seo网站快速排名软件
  • 十大软件app排行榜下载免费seo网站推广有哪些
  • 邯郸做网站流程网站建设公司
  • 网站建设公司怎样选凤山网站seo