当前位置: 首页 > news >正文

域名查询168深圳搜索优化排名

域名查询168,深圳搜索优化排名,字节跳动员工数量,深圳高端网站制作费用👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——序列模型(NLP启动!) 📚订阅专栏:机器学习&am…

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——序列模型(NLP启动!)
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

里面的算法写起来也不难,但是对于算法小白来说还是要点时间,不过花点时间也能搞明白。

文本预处理

  • 步骤
  • 读取数据集
  • 词元化
  • 词表
  • 整合所有功能
  • 小结

步骤

一篇文章可以被简单地看作一串单词序列,甚至是一串字符序列,我们将进行解析文本的预处理操作,步骤包括:
1、将文本作为字符串加载到内存中。
2、将字符串拆分为词元(如单词和字符)。
3、建立一个词表,将拆分的词元映射到数字索引。
4、将文本转换为数字索引序列,方便模型操作。

import collections
import re
from d2l import torch as d2l

读取数据集

我们从《时光机器》这篇外国书中加载文本,只有几万多的单词。
下面的函数将数据集读取到由多条文本行组成的列表中,其中每条文本行都是一个字符串。(这边省略了标点符号和字母大写)

#@save
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt','090b5e7e70c295757f55df93cb0a180b9691891a')
def read_time_machine():  #@save"""将时间机器的数据集加载到文本行的列表中"""with open(d2l.download('time_machine'), 'r') as f:lines = f.readlines()return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]lines = read_time_machine()
print(f'# 文本总行数: {len(lines)}')
print(lines[0])
print(lines[10])

运行结果:
在这里插入图片描述

词元化

下面的tokenize函数将文本行列表(lines)作为输入。每个文本序列又被拆分成一个词元列表,词元(token)是文本的基本单位(可以分解为单词或字符)。
最后返回一个由词元列表组成的列表,其中的每个词元都是一个字符串(string)。

def tokenize(lines, token='word'):  #@save"""将文本拆分为单词词元或字符词元"""if token == 'word':return [line.split() for line in lines]elif token == 'char':return [list(line) for line in lines]else:print('错误:未知词元类型:' + token)tokens = tokenize(lines)
for i in range(11):print(tokens[i])

运行结果:

[‘the’, ‘time’, ‘machine’, ‘by’, ‘h’, ‘g’, ‘wells’]
[]
[]
[]
[]
[‘i’]
[]
[]
[‘the’, ‘time’, ‘traveller’, ‘for’, ‘so’, ‘it’, ‘will’, ‘be’, ‘convenient’, ‘to’, ‘speak’, ‘of’, ‘him’]
[‘was’, ‘expounding’, ‘a’, ‘recondite’, ‘matter’, ‘to’, ‘us’, ‘his’, ‘grey’, ‘eyes’, ‘shone’, ‘and’]
[‘twinkled’, ‘and’, ‘his’, ‘usually’, ‘pale’, ‘face’, ‘was’, ‘flushed’, ‘and’, ‘animated’, ‘the’]

词表

模型更喜欢使用的输入不是字符串而是数字,因此我们构造一个字典就好了,这个字典就叫词表
步骤如下:
1、将训练集中的文档合并在一起,对它们的唯一词元进行统计,得到的统计结果称为语料(corpus)
2、根据每个唯一词元的出现频率,为其分配数字索引(很少出现的词元可以被移除来降低复杂度)
3、不存在或者已删除的词元将映射到特定的位置词元
< u n k > <unk> <unk>
4、我们就可以增加一个列表来保存那些被保留的词元,如:
< p a d > :填充词元 < b o s > :序列开始词元 < e o s > :序列结束词元 <pad>:填充词元\\ <bos>:序列开始词元\\ <eos>:序列结束词元 <pad>:填充词元<bos>:序列开始词元<eos>:序列结束词元
具体代码如下:

class Vocab:  #@save"""文本词表"""def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):if tokens is None:tokens = []if reserved_tokens is None:reserved_tokens = []# 按出现频率排序counter = count_corpus(tokens)self._token_freqs = sorted(counter.items(), key=lambda x: x[1],reverse=True)# 未知词元的索引为0self.idx_to_token = ['<unk>'] + reserved_tokensself.token_to_idx = {token: idxfor idx, token in enumerate(self.idx_to_token)}for token, freq in self._token_freqs:if freq < min_freq:breakif token not in self.token_to_idx:self.idx_to_token.append(token)self.token_to_idx[token] = len(self.idx_to_token) - 1def __len__(self):return len(self.idx_to_token)def __getitem__(self, tokens):if not isinstance(tokens, (list, tuple)):return self.token_to_idx.get(tokens, self.unk)return [self.__getitem__(token) for token in tokens]def to_tokens(self, indices):if not isinstance(indices, (list, tuple)):return self.idx_to_token[indices]return [self.idx_to_token[index] for index in indices]@propertydef unk(self):  # 未知词元的索引为0return 0@propertydef token_freqs(self):return self._token_freqsdef count_corpus(tokens):  #@save"""统计词元的频率"""# 这里的tokens是1D列表或2D列表if len(tokens) == 0 or isinstance(tokens[0], list):# 将词元列表展平成一个列表tokens = [token for line in tokens for token in line]  # 提取每一行的每个词元,其实也就是一个双层循环# 返回一个可以用来计数的APIreturn collections.Counter(tokens)

我们首先使用数据集作为语料库来构建词表,然后打印一下前几个高频词元以及他们的索引:

vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[:10])

输出结果:
在这里插入图片描述
现在,我们可以将每一条文本行转换成一个数字索引列表:

for i in [0, 10]:print('文本:', tokens[i])print('索引:', vocab.__getitem__(tokens[i]))

结果如下:

文本: [‘the’, ‘time’, ‘machine’, ‘by’, ‘h’, ‘g’, ‘wells’]
索引: [1, 19, 50, 40, 2183, 2184, 400]
文本: [‘twinkled’, ‘and’, ‘his’, ‘usually’, ‘pale’, ‘face’, ‘was’, ‘flushed’, ‘and’, ‘animated’, ‘the’]
索引: [2186, 3, 25, 1044, 362, 113, 7, 1421, 3, 1045, 1]

整合所有功能

在使用上述函数时,我们将所有功能打包到load_corpus_time_machine函数中,该函数返回corpus词元索引列表和vocab词表,我们在这边做出改变:
1、为了简化以后的村联,这里使用字符来实现词元化
2、数据集中的每个文本行不一定是一个句子或一个段落,还可能是一个单词,因此返回的corpus仅处理为单个列表,而不是使用多词元列表构成的一个列表。

from d2l import torch as d2ldef load_corpus_time_machine(max_tokens=-1):  #@save"""返回《时光机器》数据集的词元索引列表和词表"""lines = d2l.read_time_machine()tokens = d2l.tokenize(lines, 'char')vocab = d2l.Vocab(tokens)# 数据集中的每个文本行不一定是一个句子或一个段落# 所以将所有文本行展平到一个列表中corpus = [vocab[token] for line in tokens for token in line]if max_tokens > 0:corpus = corpus[:max_tokens]return corpus, vocabcorpus, vocab = load_corpus_time_machine()
print(len(corpus), len(vocab))

运行结果:

170580 28

小结

1、文本是序列数据的一种最常见形式之一。
2、为了对文本进行预处理,我们通常将文本拆分为词元,构建词表将词元字符串映射为数字索引,并将文本数据转换为词元索引以供模型操作。

http://www.dinnco.com/news/37005.html

相关文章:

  • 快速网站轻松排名网络推广电话
  • vs做网站链接sql快速建站哪个平台好
  • 25转行做网站运营营销策划公司靠谱吗
  • 换物网站为什么做不起来成都十大营销策划公司
  • 百度站长平台网站改版工具精准客户信息一条多少钱
  • 设计素材网站照片网页设计图
  • 暗网网站有那些百度推广一级代理商名单
  • 网页入口网站推广推广关键词优化
  • 网站首页关键词设置2023第二波疫情已经到来
  • 公司网站设计费计入什么科目网站建设与优化
  • 罗定市住房和城乡建设局网站成都seo招聘信息
  • 什么是互联网无锡百度关键词优化
  • 如何用vps建网站燕郊今日头条
  • 制作网站方法网络营销电子版教材
  • 做外贸网站案例亚马逊关键词搜索工具
  • 汽车网站开发思路百度广告关键词价格表
  • 石家庄网站制作sem专员
  • 怎么做网站首页百度一下浏览器
  • 用六类网站做电话可以吗产品推广软文范文
  • 网站策划书内容如何在手机上开自己的网站
  • 怎样做展示型网站项目平台
  • 全国疫情地图实时动态黑帽seo培训大神
  • php网站做语言包培训学校
  • 深圳 网站建设培训班seo发帖工具
  • 韩国风格网站广告联盟平台入口
  • 漳州找人做网站要求哪些服务营销包括哪些内容
  • 在郑州建设网站这么做职业教育培训机构排名前十
  • 外墙设计装修效果图软件seo搜索引擎优化心得体会
  • 河南做网站需要多少钱企业网站分析报告
  • 租赁网站空间更换怎么做网店运营具体做什么