当前位置: 首页 > news >正文

济南城乡建设官方网站电商培训学校

济南城乡建设官方网站,电商培训学校,厦门做网站培训,南宁网站开发招聘✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——AVL树☂️<3>开发环境&#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;AVL树是对二叉搜索树的严格高度控制&#xff0c;所以AVL树的搜索效率很高…

✅<1>主页:我的代码爱吃辣
📃<2>知识讲解:数据结构——AVL树
☂️<3>开发环境:Visual Studio 2022
💬<4>前言:AVL树是对二叉搜索树的严格高度控制,所以AVL树的搜索效率很高,但是这是需要付出很大的代价的,要维护父亲指针,和平衡因子。

目录

一.AVL的概念

二. AVL树节点及整体结构的定义

 三. AVL树的插入

1. 先按照二叉搜索树的规则将节点插入到AVL树中

2.根据插入的位置调整平衡因子

四.AVL树的旋转

1.左单旋

2.右单旋

3.左右双旋

4.右左双旋

5.总结:

五.AVL树的删除(了解)

六.AVL树的性能

七.完整代码及测试


一.AVL的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下。
因此,两位俄罗斯的数学家G.M.Adelson-Velskii
E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

 

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O(log{_{2}}^{n}),搜索时间复杂度O(log{_{2}}^{n})

二. AVL树节点及整体结构的定义

//AVL树结点
template<class K, class V>
struct AVLTreeNode
{AVLTreeNode(pair<K,V> kv):_kv(kv),_bf(0),_left(nullptr),_right(nullptr),_parent(nullptr){}pair<K, V> _kv;              //Key/Value数据int _bf;                     //平衡因子AVLTreeNode<K, V>* _left;    //结点的左子树AVLTreeNode<K, V>* _right;   //结点的右子树AVLTreeNode<K, V>* _parent;  //结点的双亲
};//AVL树定义
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool insert(pair<K,V> kv){}
private:Node* _root = nullptr;
};

 三. AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

插入过程:

1. 先按照二叉搜索树的规则将节点插入到AVL树中

    bool insert(pair<K,V> kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* cur = _root;//记录当前结点Node* parent = nullptr;//记录父亲结点while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{return false;}}//找到了合适的位置,创建新节点,出入位置cur = new Node(kv);//修改新节点的指向if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//未完待续....}

2.根据插入的位置调整平衡因子

平衡因子:右子树高度减去左子树高度。

cur 插入后,parent 的平衡因子一定需要调整,在插入之前,pParent 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

  1.  如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
  2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可

此时:parent的平衡因子可能有三种情况:0,正负1, 正负2

  1. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足  AVL树的性质,插入成功。
  2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此 时以parent为根的树的高度增加,需要继续向上更新。
  3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理。
while (parent){//cur插入到parent的左侧if (parent->_left == cur){parent->_bf--;}else//cur插入到parent的右侧{parent->_bf++;}//需向上调整平衡因子if (parent->_bf == 1||parent->_bf==-1){cur = parent;parent = cur->_parent;}//无需向上调整平衡因子else if(parent->_bf==0){break;}//无需向上调整平衡因子,直接旋转处理else if (parent->_bf == 2||parent->_bf==-2){//旋转,旋转之后平衡因子已经平衡,可以直接推出break;}else//出现的其他的错误情况{assert(0);}}

四.AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1.左单旋

新节点插入较高右子树的右侧

上图在插入前,AVL树是平衡的,新节点插入到60的右子树中,30右子树增加了一层,导致以60为根的二叉树不平衡,要让30平衡,只能将30右子树的高度减少一层,左子树增加一层,即将右子树往上提,这样30转下来,因为30比60小,只能将其放在60的左子树,而如果60有左子树,左子树根的值一定大于30,小于60,只能将其放在30的右子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:

  • 60节点的左孩子可能存在,也可能不存在。
  • 30可能是整棵树根节点,也可能是子树根节点。

  如果是整棵树根节点,旋转完成后,要更整棵树新根节点;如果是子树根节点,可能是某个节点的左子树,也可能是右子树。

    void RotateL(Node* parent){//  a//     b//        c//找到需要旋转的结点Node* curR = parent->_right;Node* curRL = curR->_left;//调整结点,并且修改其父亲结点指针parent->_right = curRL;if (curRL)//可能为空{curRL->_parent = parent;}//在修改子树根节点之前,保存子树根节点的父亲Node* pparent = parent->_parent;//修改子树根节点curR->_left = parent;parent->_parent = curR;//子树根节点有可能是整棵树的根节点if (pparent == nullptr){_root = curR;_root->_parent = nullptr;}else//子树根节点不是整棵树的根节点{//还要看子树是它父亲的左孩子还是右孩子if (pparent->_left == parent){pparent->_left = curR;}else{pparent->_right = curR;}}//修改平衡因子curR->_bf = parent->_bf = 0;}

2.右单旋

新节点插入较高左子树的左侧

 右单旋过程和左单旋转过程一模一样仅仅只是反过来。

    void RotateR(Node* parent){Node* curL = parent->_left;Node* curLR = curL->_right;parent->_left = curLR;if (curLR){curLR->_parent = parent;}Node* pparent = parent->_parent;curL->_right = parent;parent->_parent = curL;if (pparent == nullptr){_root = curL;_root->_parent = nullptr;}else{if (pparent->_left == parent){pparent->_left = curL;}else{pparent->_right = curL;}}curL->_bf = parent->_bf = 0;}

3.左右双旋

新节点插入较高左子树的右侧---左右:先左单旋再右单旋

 将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。

注意:旋转之前,60的平衡因子可能是 -1 / 0 / 1,旋转完成之后,根据情况对其他节点的平衡因子进行调整。

 当h=0,时60自己就是一个新插入的结点,此时他的平衡因子就是。

所以旋转之前,需要保存curLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子。

4.右左双旋

右左双旋和左右双旋过程一模一样,仅仅只是反过来。

void RotateRL(Node* parent){Node* curR = parent->_left;Node* curRL = curR->_right;int curRL_bf = curRL->_bf;RotateL(curR);RotateR(parent);if (curRL_bf == -1){parent->_bf = 0;curRL->_bf = 0;curR->_bf = 1;}else if (curRL_bf == 1){parent->_bf = -1;curRL->_bf = 0;curR->_bf = 1;}else if (curRL_bf == 0){parent->_bf = 0;curRL->_bf = 0;curR->_bf = 0;}else{assert(false);}}

5.总结:

假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑
1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为curR

  • 当curR的平衡因子为1时,执行左单旋
  • 当curR的平衡因子为-1时,执行右左双旋

2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为curL

  • 当curL的平衡因子为-1是,执行右单旋
  • 当curL的平衡因子为1时,执行左右双旋

旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

        //调整平衡因子while (parent){if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 1||parent->_bf==-1)//需向上调整平衡因子{cur = parent;parent = cur->_parent;}else if(parent->_bf==0)//无需向上调整平衡因子{break;}else if (parent->_bf == 2||parent->_bf==-2)//无需向上调整平衡因子,直接旋转{if (parent->_bf == 2 && parent->_right->_bf == 1){RotateL(parent);//左单旋}else if (parent->_bf == -2 && parent->_left->_bf == -1){RotateR(parent);//右单旋}else if (parent->_bf == 2 && parent->_left->_bf == -1){RotateRL(parent);//右左双旋}else if (parent->_bf == -2 && parent->_left ->_bf== 1){RotateLR(parent);//左右双旋}else{assert(false);//其他错误情况}break;}else{assert(0);}

五.AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不
错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现学生们可参考《算法导论》《数据结构-用面向对象方法与C++描述》殷人昆版。

六.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即log{_{2}}^{n}。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

七.完整代码及测试

AVL.hpp

#pragma once
#include<iostream>
#include<cassert>
using namespace std;template<class K, class V>
struct AVLTreeNode
{AVLTreeNode(pair<K,V> kv):_kv(kv),_bf(0),_left(nullptr),_right(nullptr),_parent(nullptr){}pair<K, V> _kv;              //Key/Value数据int _bf;                     //平衡因子AVLTreeNode<K, V>* _left;    //结点的左子树AVLTreeNode<K, V>* _right;   //结点的右子树AVLTreeNode<K, V>* _parent;  //结点的双亲
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool insert(pair<K,V> kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{return false;}}//找到了合适的位置cur = new Node(kv);//if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//调整平衡因子while (parent){if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 1||parent->_bf==-1)//需向上调整平衡因子{cur = parent;parent = cur->_parent;}else if(parent->_bf==0)//无需向上调整平衡因子{break;}else if (parent->_bf == 2||parent->_bf==-2)//无需向上调整平衡因子,直接旋转{if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);//左单旋}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);//右单旋}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);//右左双旋}else if (parent->_bf == -2 && cur ->_bf== 1){RotateLR(parent);//左右双旋}else{//cout << parent->_bf << ":" << /*parent->_left->_bf << ":" <<*/ parent->_right->_bf << endl;assert(false);//其他错误情况}break;}else{assert(false);}}return true;}void Inorder(){_inorder(_root);cout << endl;}private:void _inorder(Node* root){if (root == nullptr){return;}_inorder(root->_left);cout << root->_kv.first << " ";_inorder(root->_right);}void RotateL(Node* parent){//  a//     b//        c//找到需要旋转的结点Node* curR = parent->_right;Node* curRL = curR->_left;//调整结点,并且修改其父亲结点指针parent->_right = curRL;if (curRL)//可能为空{curRL->_parent = parent;}//在修改子树根节点之前,保存子树根节点的父亲Node* pparent = parent->_parent;//修改子树根节点curR->_left = parent;parent->_parent = curR;//子树根节点有可能是整棵树的根节点if (pparent == nullptr){_root = curR;_root->_parent = nullptr;}else//子树根节点不是整棵树的根节点{//还要看子树是它父亲的左孩子还是右孩子if (pparent->_left == parent){pparent->_left = curR;}else{pparent->_right = curR;}curR->_parent = pparent;}//修改平衡因子curR->_bf = parent->_bf = 0;}void RotateR(Node* parent){Node* curL = parent->_left;Node* curLR = curL->_right;parent->_left = curLR;if (curLR){curLR->_parent = parent;}Node* pparent = parent->_parent;curL->_right = parent;parent->_parent = curL;if (parent == _root){_root = curL;_root->_parent = nullptr;}else{if (pparent->_left == parent){pparent->_left = curL;}else{pparent->_right = curL;}curL->_parent = pparent;}curL->_bf = parent->_bf = 0;}void RotateLR(Node* parent){Node* curL = parent->_left;Node* curLR = curL->_right;//旋转之前,保存pSubLR的平衡因子,旋转完成之后,//需要根据该平衡因子来调整其他节点的平衡因子int curLR_bf = curLR->_bf;//RotateL(curL);RotateR(parent);if (curLR_bf == -1){parent->_bf = 1;curLR->_bf = 0;curL->_bf = 0;}else if (curLR_bf == 1){parent->_bf = 0;curL->_bf = -1;curLR->_bf = 0;}else if (curLR_bf == 0){parent->_bf = 0;curL->_bf = 0;curLR->_bf = 0;}else{assert(false);}}void RotateRL(Node* parent){Node* curR = parent->_right;Node* curRL = curR->_left;int curRL_bf = curRL->_bf;RotateR(curR);RotateL(parent);if (curRL_bf == -1){parent->_bf = 0;curRL->_bf = 0;curR->_bf = 1;}else if (curRL_bf == 1){parent->_bf = -1;curRL->_bf = 0;curR->_bf = 0;}else if (curRL_bf == 0){parent->_bf = 0;curRL->_bf = 0;curR->_bf = 0;}else{assert(false);}}Node* _root = nullptr;
};

test.cpp

#define _CRT_SECURE_NO_WARNINGS 1
#include"AVL.hpp"
int main()
{int arr1[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };int arr2[] = {4, 2, 6, 1, 3, 5, 15, 7, 16, 14};AVLTree<int, int> a1;AVLTree<int, int> a2;for (auto e : arr1){a1.insert(make_pair(e,e));}a1.Inorder();for (auto e : arr2){a2.insert(make_pair(e, e));}a2.Inorder();
}

 

http://www.dinnco.com/news/39738.html

相关文章:

  • 建设了湛江市志愿服务网站口碑营销方案
  • 淘宝刷单网站制作电商运营多少钱一个月
  • b2c网站程序成人专业技能培训机构
  • 赚钱一天赚300到500平台山西seo基础教程
  • 苏州企业网站设计方案线上营销怎么做
  • 做淘宝客网站制作教程视频教程app推广方式有哪些
  • 个人如何免费建网站太原竞价托管公司推荐
  • html5开发环境seoul是什么品牌
  • 怎样做购物网站seo关键词优化最多可以添加几个词
  • 网站开发人员招聘软文写作经验
  • 网站建设的毕业设计选题管理系统保定百度seo公司
  • wordpress动漫主题曲杭州百度快照优化排名推广
  • 做网站建设需要做哪些工作怎么创建网站链接
  • 绵阳网络公司网站建设网站宣传
  • 域名停靠万网域名网站网站是怎么做的
  • 济南网站建设服务网站怎么优化
  • 网站浮动窗口怎么设置百度客服中心人工在线咨询
  • 服务器部署php网站柳州网站建设哪里有
  • vue做公司网站自己的网站怎么做seo
  • 建设局电工证与安监局电工证学seo哪个培训好
  • 模版免费网站互联网营销是什么
  • 开封哪里有做交友网站的seo首页排名优化
  • 网站需要去工信部做备案吗网站seo策划方案案例分析
  • 活体拍摄乐陵市seo关键词优化
  • 标志设计网站推荐百度收录查询方法
  • 开发公司物业移交物业协议seo搜索引擎优化工作内容
  • 电商网站搭建流程电子商务网站建设的步骤
  • 爱网站搭建关键词排名零芯互联关键词
  • 大连日文网站设计网站优化包括哪些
  • wordpress怎么搭建网站网络营销的方法包括哪些