当前位置: 首页 > news >正文

开发助手app优化大师的三大功能

开发助手app,优化大师的三大功能,网站开发数据库设计,网站开发服务费会计处理文章目录 一、准备工作1、准备数据文件2、启动Spark Shell 二、加载数据为Dataset1、读文件得数据集 三、给数据集添加元数据信息1、定义学生样例类2、导入隐式转换3、将数据集转换成学生数据集4、对学生数据集进行操作(1)显示数据集内容(2&a…

文章目录

      • 一、准备工作
        • 1、准备数据文件
        • 2、启动Spark Shell
      • 二、加载数据为Dataset
        • 1、读文件得数据集
      • 三、给数据集添加元数据信息
        • 1、定义学生样例类
        • 2、导入隐式转换
        • 3、将数据集转换成学生数据集
        • 4、对学生数据集进行操作
          • (1)显示数据集内容
          • (2)打印数据集模式
          • (3)对数据集进行投影操作
          • (4)对数据集进行过滤操作
          • (5)对数据集进行统计操作
          • (6)对数据集进行排序操作
          • (7)重命名数据集字段
      • 四、将数据集转为数据帧
        • 1、将数据集转为数据帧
        • 2、对学生数据帧进行操作
          • (1)显示数据帧内容
          • (2)显示数据帧模式信息
          • (3)对数据帧进行投影操作
          • (4)对数据帧进行过滤操作
          • (5)对数据帧进行统计操作
          • (6)对数据帧进行排序操作
          • (7)重命名数据帧字段
      • 五、基于数据帧进行SQL查询
        • 1、基于数据帧创建临时视图
        • 2、使用spark对象执行SQL查询
          • (1)查询全部表记录
          • (2)显示数据表结构
          • (3)对表进行投影操作
          • (4)对表进行选择操作
          • (5)对表进行统计操作
          • (6)对表进行排序操作
          • (7)重命名数据表字段

一、准备工作

1、准备数据文件

1,郑秀芸,,20
2,王志峰,,18
3,陈燕文,,21
4,郑国栋,,19
5,肖雨涵,,20
  • 在/home目录里创建student.txt文件

cd /home
vim student.txt

  • 将student.txt上传到HDFS的/student/input目录

hdfs dfs -mkdir -p /student/input
hdfs dfs -put student.txt /student/input

2、启动Spark Shell

  • 启动Spark Shell,执行命令:spark-shell --master spark://master:7077

在这里插入图片描述

二、加载数据为Dataset

1、读文件得数据集

  • 调用SparkSession对象的read.textFile()可以读取指定路径中的文件内容,并加载为一个Dataset
  • 执行命令:val ds = spark.read.textFile("hdfs://master:9000/student/input/student.txt")
    在这里插入图片描述

三、给数据集添加元数据信息

1、定义学生样例类

  • 定义一个样例类Student,用于存放数据描述信息(Schema)
  • 执行命令:case class Student(id: Int, name: String, gender: String, age: Int)
    在这里插入图片描述

2、导入隐式转换

  • 执行命令:import spark.implicits._ (_表示implicits包里所有的类,类似于Java里的*)
    在这里插入图片描述

3、将数据集转换成学生数据集

  • 执行命令:paste进入粘贴模式,然后执行如下命令
val studentDS = ds.map(line => {val fields = line.split(",")val id = fields(0).toIntval name = fields(1)val gender = fields(2)val age = fields(3).toIntStudent(id, name, gender, age)}
)

在这里插入图片描述

4、对学生数据集进行操作

(1)显示数据集内容
  • 执行命令:studentDS.show
    在这里插入图片描述
(2)打印数据集模式
  • 执行命令:studentDS.printSchema
    在这里插入图片描述
(3)对数据集进行投影操作
  • 显示学生的姓名和年龄字段,执行命令:studentDS.select("name", "age").show
    在这里插入图片描述
  • 对应的SQL语句:select name, age from student
(4)对数据集进行过滤操作
  • 显示女生记录,执行命令:studentDS.filter("gender == '女'").show
    在这里插入图片描述
  • 显示年龄在[19, 20]之间的记录
  • 执行命令:val ds1 = studentDS.filter("age >= 19")
    在这里插入图片描述
    在这里插入图片描述
  • 两个数据集求交集
    在这里插入图片描述
  • 可以有更简单的处理方式,执行命令:studentDS.filter("age >= 19 and age <= 20").show
    在这里插入图片描述
(5)对数据集进行统计操作
  • 求20岁以上的女生人数
    在这里插入图片描述
  • 分组统计男女生总年龄,执行命令:studentDS.groupBy("gender").sum("age").show
    在这里插入图片描述
  • 分组统计男女生平均年龄:执行命令:studentDS.groupBy("gender").sum("age").show
    在这里插入图片描述
  • 分组统计男女生最大年龄,执行命令:studentDS.groupBy("gender").max("age").show
    在这里插入图片描述
  • 分组统计男女生最小年龄,执行命令:studentDS.groupBy("gender").min("age").show
    在这里插入图片描述
(6)对数据集进行排序操作
  • 按年龄升序排列,执行命令:studentDS.sort("age").show()
    在这里插入图片描述
  • 按年龄降序排列,执行命令:studentDS.sort(studentDS("age").desc).show
    在这里插入图片描述
  • 先按性别升序排列,再按年龄降序排列,执行命令:studentDS.sort(studentDS("gender"), studentDS("age").desc).show()
    在这里插入图片描述
  • 对应的SQL语句:select * from student order by gender, age desc;
(7)重命名数据集字段
  • 执行命令:studentDS.select(studentDS("id").as("学号"), studentDS("name").as("姓名"), studentDS("gender").as("性别"), studentDS("age").as("年龄")).show
    在这里插入图片描述

四、将数据集转为数据帧

1、将数据集转为数据帧

  • 将学生数据集转为学生数据帧,执行命令:val studentDF = studentDS.toDF()
    在这里插入图片描述

2、对学生数据帧进行操作

(1)显示数据帧内容
  • 显示学生数据帧内容,执行命令:studentDF.show
    在这里插入图片描述
(2)显示数据帧模式信息
  • 打印学生数据帧模式信息,执行命令:studentDF.printSchema
    在这里插入图片描述
(3)对数据帧进行投影操作
  • 显示学生数据帧姓名与年龄字段,年龄加1,执行命令:studentDF.select(studentDF("name"), studentDF("age") + 1).show
    在这里插入图片描述
(4)对数据帧进行过滤操作
  • 查询年龄在19岁以上的记录,执行命令:studentDF.filter(studentDF("age") > 19).show
    在这里插入图片描述
  • 查询20岁以上的女生记录,执行命令:studentDF.filter("age > 20 and gender == '女'").show()
    在这里插入图片描述
(5)对数据帧进行统计操作
  • 统计学生数据帧总记录数,执行命令:studentDF.count
    在这里插入图片描述
  • 分组统计男女生总年龄,执行命令:studentDF.groupBy("gender").sum("age").show
    在这里插入图片描述
  • 分组统计男女生平均年龄,执行命令:studentDF.groupBy("gender").avg("age").show
    在这里插入图片描述
  • 分组统计男女生最大年龄,执行命令:studentDF.groupBy("gender").max("age").show
    在这里插入图片描述
  • 分组统计男女生最小年龄,执行命令:studentDF.groupBy("gender").min("age").show
    在这里插入图片描述
  • 分组统计男女生人数,执行命令:studentDF.groupBy("gender").count.show
    在这里插入图片描述
(6)对数据帧进行排序操作
  • 对年龄升序排列,执行命令:studentDF.sort("age").show
    在这里插入图片描述
  • 对年龄降序排列,执行命令:studentDF.sort(studentDF("age").desc).show
    在这里插入图片描述
  • 先按性别升序,再按年龄降序,- 执行命令:studentDF.sort(studentDF("gender"), studentDF("age").desc).show
    在这里插入图片描述
(7)重命名数据帧字段
  • 执行命令:studentDF.select(studentDF("id").as("学号"), studentDF("name").as("姓名"), studentDF("gender").as("性别"), studentDF("age").as("年龄")).show
    在这里插入图片描述

五、基于数据帧进行SQL查询

1、基于数据帧创建临时视图

  • 执行命令:studentDF.createOrReplaceTempView("student")
    在这里插入图片描述

2、使用spark对象执行SQL查询

(1)查询全部表记录
  • 执行命令:spark.sql("select * from student").show
    在这里插入图片描述
(2)显示数据表结构
  • 执行命令:spark.sql("describe student").show
    在这里插入图片描述
(3)对表进行投影操作
  • 执行命令:spark.sql("select name, age + 1 from student").show
    在这里插入图片描述
(4)对表进行选择操作
  • 查询年龄在19岁以上的记录,执行命令:spark.sql("select * from student where age > 19").show
    在这里插入图片描述
  • 查询20岁以上的女生记录,执行命令:spark.sql("select * from student where age > 20 and gender = '女'").show()
    在这里插入图片描述
(5)对表进行统计操作
  • 查询学生表总记录数,执行命令:spark.sql("select count(*) count from student").show
    在这里插入图片描述
  • 分组统计男女生总年龄,执行命令:spark.sql("select gender, sum(age) from student group by gender").show
    在这里插入图片描述
  • 分组统计男女生平均年龄,执行命令:spark.sql("select gender, avg(age) from student group by gender").show
    在这里插入图片描述
  • 分组统计男女生最大年龄,执行命令:spark.sql("select gender, max(age) from student group by gender").show

在这里插入图片描述

  • 分组统计男女生最小年龄,执行命令:spark.sql("select gender, min(age) from student group by gender").show
    在这里插入图片描述
  • 分组统计男女生人数,执行命令:spark.sql("select gender, count(*) count from student group by gender").show
    在这里插入图片描述
(6)对表进行排序操作
  • 按年龄升序排列,执行命令:spark.sql("select * from student order by age").show
    在这里插入图片描述
  • 按年龄降序排列,执行命令:spark.sql("select * from student order by age desc").show
    在这里插入图片描述
  • 先按性别升序,再按年龄降序,执行命令:spark.sql("select * from student order by gender asc, age desc").show
    在这里插入图片描述
(7)重命名数据表字段
  • 执行命令:spark.sql("select id stu_id, name stu_name, gender stu_gender, age stu_age from student").show()
    在这里插入图片描述
http://www.dinnco.com/news/44157.html

相关文章:

  • 做网站那家比较好网页搜索关键词
  • 封丘有做网站的吗网络营销方式包括哪些
  • 建设企业网站新闻开发的意义南京谷歌优化
  • 网络销售的理解东莞网站优化关键词排名
  • 学做美食去哪个网站好品牌的宣传及推广
  • html网站的直播怎么做seo推广哪家好
  • 浙江网站设计 site百度小说搜索风云榜
  • 起点网站建设上海何鹏seo
  • 外包公司网站开发公司企业网站开发
  • 商务网站的分类网站设计框架
  • 绵阳的网站建设免费做网站网站
  • 做网站加盟廊坊优化外包
  • 网站建设js上海优化外包公司排名
  • 做搜索的网站有哪些宁波seo推广外包公司
  • 帝国cms做门户网站怎么创作自己的网站
  • seo网站排名优化软件nba最新交易汇总
  • 网站套模板什么意思鹤壁网络推广哪家好
  • 曲沃网站开发seo网站优化公司
  • wordpress后台权限惠州seo优化
  • 淘宝客网站容易做吗广州百度提升优化
  • 东阿企业做网站推广百度推广助手客户端
  • 91色做爰免费网站要做网络推广
  • 中国建筑室内设计师网武汉seo公司哪家好
  • 新手做网站什么类型自动外链工具
  • 做胃镜多少钱天津津门网站I关键词首页排名优化平台
  • asp.net门户网站项目怎么做最新国际新闻大事件
  • 自己做的网站搜索不到网络软文怎么写
  • 百度做网站的seo搜索引擎优化到底是什么
  • 如何完善企业网站建设软文怎么写
  • 自动提卡的网站怎么做的seo关键词快速获得排名