当前位置: 首页 > news >正文

梦幻创意网站建设网络推广方式

梦幻创意网站建设,网络推广方式,重庆高端网站建设,辽宁建设工程信息网审核系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…

系列文章目录

PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用


文章目录

  • 系列文章目录
  • 一、非线性激活是什么?
  • 二、ReLU函数
    • 1.ReLU函数介绍
    • 2.使用Relu函数处理矩阵
  • 三、Sigmoid函数
    • 1.Sigmoid函数介绍
    • 2.使用Sigmoid函数处理CIFAR10数据集


一、非线性激活是什么?

非线性激活是神经网络中的一种操作,它被用于引入非线性特性到神经网络的输出中。在神经网络中,线性操作如加法和乘法只能产生线性变换,而非线性激活函数则允许网络学习非线性关系

在每个神经元的输出中应用非线性激活函数,可以使得神经网络能够学习和表示更加复杂的函数关系。这是因为非线性激活函数可以对输入数据进行非线性映射,从而增加了网络的表达能力。

常见的非线性激活函数包括sigmoid函数、ReLU函数、tanh函数等。

英文为:Non-linear Activations;官网解释为:Non-linear Activations

二、ReLU函数

1.ReLU函数介绍

首先先查看官网对其解释:如下图所示
在这里插入图片描述
在这里插入图片描述
可以见到有一个参数inplace,布尔类型,所以具有两种情况
当inplace 为True时,会将输入数据进行替换;当inplace 为False时,输入数据不进行替换

即:input=-1 经过 Relu(input,inplace=True)后,input=0;
input=-1 经过 Relu(input,inplace=False)后,input=-1;

即将小于0的数据替换为0
由官网的图像可以推测,Relu函数的表达式为
在这里插入图片描述
因为input=-1时小于0,故替换为0.

其次:relu函数也是分段线性函数。

2.使用Relu函数处理矩阵

import torch# 准备数据
input = torch.tensor([[1,-1],[-2,3]])# 搭建自己的一个神经网络
class lgl(torch.nn.Module):def __init__(self):super(lgl, self).__init__()# 默认inplace参数为Falseself.relu1 = torch.nn.ReLU()def forward(self,input):output = self.relu1(input)return output# 实例化
l = lgl()
output = l(input)
print(input)
print(output)

输出结果如下:

tensor([[ 1, -1],[-2,  3]])
tensor([[1, 0],[0, 3]])

验证结果,由Relu函数的特点,进行relu后会将小于等于0的数值替换为0,大于0的数值保持不变,故上述结果正确。同时inplace默认是False,故输入不会改变。

下面将inplace=True

import torch# 准备数据
input = torch.tensor([[1,-1],[-2,3]])# 搭建自己的一个神经网络
class lgl(torch.nn.Module):def __init__(self):super(lgl, self).__init__()# 同时将inplace参数设置为Trueself.relu1 = torch.nn.ReLU(inplace=True)def forward(self,input):output = self.relu1(input)return output# 实例化
l = lgl()
output = l(input)
print(input)
print(output)

输出结果如下:

tensor([[1, 0],[0, 3]])
tensor([[1, 0],[0, 3]])

三、Sigmoid函数

1.Sigmoid函数介绍

首先先查看官网,对其解释如下图所示

在这里插入图片描述
函数表达式如下
在这里插入图片描述
函数取值范围为(0,1)

2.使用Sigmoid函数处理CIFAR10数据集

代码如下:

import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 准备cifar10数据集
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载器
dataloader = DataLoader(test_set,batch_size=64)# 搭建自己的神经网络
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.sigmoid1 = torch.nn.Sigmoid()def forward(self, input):output = self.sigmoid1(input)return output# 实例化
l = Lgl()# 进行sigmoid函数化,并在TensorBoard中显示
writer = SummaryWriter("logs_test")
step = 0
for data in dataloader:imgs, target = data# 未进行sigmoid函数前图片显示writer.add_images("input",imgs,step)output = l(imgs)# 进行sigmoid函数化后图片显示writer.add_images("output",output,step)step = step + 1writer.close()

对比如下图所示:
在这里插入图片描述
在这里插入图片描述

http://www.dinnco.com/news/45911.html

相关文章:

  • wordpress后台添加字段深圳seo关键词优化
  • 网站检索功能怎么做上海seo推广
  • 网站排名易下拉霸屏seo在线优化平台
  • 常州免费做网站seo干什么
  • 荆门网站建设服务博客网
  • wordpress和e宁德seo培训
  • 如何加强政府网站建设百度网址安全中心怎么关闭
  • 长沙网站开发 58恢复2345网址导航
  • 上海网安网站建设全国各城市疫情高峰感染进度
  • 视频网站怎么做的反爬虫有哪些实用的网络推广方法
  • 高端网站建设套餐百度推广业务员
  • 沂源网站建设今日国际新闻大事件
  • 网站banner制作产品推广图片
  • ups国际快递网站建设模块分析国际新闻头条今日要闻
  • 做外账要登什么网站seo网站优化课程
  • 网站做直播功能需要注册吗做推广怎么做
  • 外贸网站怎样做在线葡京在线葡京
  • 上海哪个区最繁华网站seo方案
  • 做设计外包的网站站长工具果冻传媒
  • 建设手机网站的目的中国十大关键词
  • layui做移动网站上海网站排名seo公司
  • 哪个网站免费h5模板多引流推广怎么做
  • wordpress可以制作什么网站广告投放的方式有哪些
  • 购物网站产品做促销能赚钱吗免费crm
  • 单机怎么做网站seo数据分析
  • 怎么样做网站赚钱吗网络营销推广方案
  • 网站服务器的搭建南京百度快照优化排名
  • 详细网络设计方案佛山网络排名优化
  • wordpress从csv批量发帖太原百度关键词优化
  • 网站开发生命周期模型网站批量查询