当前位置: 首页 > news >正文

百度推广和网站建设网络推广优化方案

百度推广和网站建设,网络推广优化方案,万能图片编辑器,网站开发亿玛酷信赖相关博客 【自然语言处理】【大模型】大语言模型BLOOM推理工具测试 【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型 【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍 【自然语言处理】【大模型】BLOOM:一个176B参数…

相关博客
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型
【自然语言处理】【大模型】PaLM:基于Pathways的大语言模型
【自然语言处理】【chatGPT系列】大语言模型可以自我改进
【自然语言处理】【ChatGPT系列】WebGPT:基于人类反馈的浏览器辅助问答
【自然语言处理】【ChatGPT系列】FLAN:微调语言模型是Zero-Shot学习器
【自然语言处理】【ChatGPT系列】ChatGPT的智能来自哪里?
【自然语言处理】【ChatGPT系列】大模型的涌现能力

​ BLOOM的原理见【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型

​ BLOOM是由HuggingFace推出的大模型,其参数量达到176B(GPT-3是175B)。目前超过100B参数量且能够支持中文的开源大模型只有BLOOM和GLM-130B。由于HuggingFace是著名开源工具Transformers的开发公司,很多推理工具都会支持Transformers中的模型。

​ LLM(大语言模型)推理的两个问题:(1) 单张显卡无法容纳整个模型;(2) 推理速度太慢。本文初步整理了一些推理大模型的工具和代码,并简单测试了推理速度。下面是本文测试的一些背景:

  • 目前是2023年2月

  • 使用7B模型bloom-7b1-mt

  • 4张3090(但在实际推理中仅使用2张3090)

  • 依赖包的版本

    transformers==4.26.0
    tensor-parallel==1.0.24
    deepspeed==0.7.7
    bminf==2.0.1
    

零、辅助函数

# utils.py
import numpy as npfrom time import perf_counterdef measure_latency(model, tokenizer, payload, device, generation_args={}):input_ids = tokenizer(payload, return_tensors="pt").input_ids.to(device)latencies = []# 预热for _ in range(2):_ =  model.generate(input_ids, **generation_args)# 统计时间for _ in range(10):start_time = perf_counter()_ = model.generate(input_ids, **generation_args)latency = perf_counter() - start_timelatencies.append(latency)# 计算统计量time_avg_ms = 1000 * np.mean(latencies) # 延时均值time_std_ms = 1000 * np.std(latencies) # 延时方差time_p95_ms = 1000 * np.percentile(latencies,95) # 延时的95分位数return f"P95延时 (ms) - {time_p95_ms}; 平均延时 (ms) - {time_avg_ms:.2f} +\- {time_std_ms:.2f};"def infer(model, tokenizer, payload, device):input_ids = tokenizer(payload, return_tensors="pt").input_ids.to(device)logits = model.generate(input_ids, num_beams=1, max_length=512)out = tokenizer.decode(logits[0].tolist())return out

一、层并行

​ BLOOM是Huggingface开发的,所以在transformers库中提供了支持。具体来说,在使用from_pretrained加载模型时,指定参数devce_map即可。其通过将模型的不同层放置在不同的显卡上,从而将单个大模型分拆至多张卡上(流水线并行也会将层分拆,然后采用流水线的方式训练模型)。下面是调用的示例代码:

# layer_parallel_test.py
import os
import transformersfrom utils import measure_latency, infer
from transformers import AutoTokenizer, AutoModelForCausalLMtransformers.logging.set_verbosity_error()
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"def run():model_name = "bigscience/bloomz-7b1-mt"payload = """参考下面的文章,然后用与文章相同的语言回答问题: 段落:当细菌突破免疫系统的防御而开始增生时,疾病会由结核菌感染进展到症状明显的结核病。在原发型结核病 (占 1-5% 的比例),这种现象会在感染刚开始的时候很快的发生。然而>多数人感染模式为潜伏结核感染,通常没有明显症状。在5-10%潜伏结合感染的案例中,这些休眠的细菌经常会在感染后数年的时间制造出活动的结核。 问题:What is the next stage after TB infection?"""tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")model = model.eval()out = infer(model, tokenizer, payload, model.device)print("="*70+" 模型输入输出 "+"="*70)print(f"模型输入: {payload}")print(f"模型输出: {out}")print("\n\n"+"="*70+" 模型延时测试 "+"="*70)print(measure_latency(model, tokenizer, payload, model.device))print("\n\n"+"="*70+" 显存占用 "+"="*70)print(os.system("nvidia-smi"))if __name__ == "__main__":run()pass

模型的时延结果:

P95延时 (ms) - 118.402308691293; 平均延时 (ms) - 117.72 +- 0.58;

显存占用:

请添加图片描述

二、张量并行

​ 张量并行是将矩阵乘法进行分块,从而将大矩阵拆分为更小的矩阵,这样就能把不同的矩阵放置在不同的显卡上。(具体原理会在后续的文章中介绍)

​ 这里使用开源工具包tensor_parallel来实现。

# tensor_parallel_test.py
import os
import transformers
import tensor_parallel as tpfrom utils import measure_latency, infer
from transformers import AutoTokenizer, AutoModelForCausalLMtransformers.logging.set_verbosity_error()
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"def run():model_name = "bigscience/bloomz-7b1-mt"payload = """参考下面的文章,然后用与文章相同的语言回答问题: 段落:当细菌突破免疫系统的防御而开始增生时,疾病会由结核菌感染进展到症状明显的结核病。在原发型结核病 (占 1-5% 的比例),这种现象会在感染刚开始的时候很快的发生。然而>多数人感染模式为潜伏结核感染,通常没有明显症状。在5-10%潜伏结合感染的案例中,这些休眠的细菌经常会在感染后数年的时间制造出活动的结核。 问题:What is the next stage after TB infection?"""tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)model = tp.tensor_parallel(model, ["cuda:0", "cuda:1"])model = model.eval()out = infer(model, tokenizer, payload, model.device)print("="*70+" 模型输入输出 "+"="*70)print(f"模型输入: {payload}")print(f"模型输出: {out}")print("\n\n"+"="*70+" 模型延时测试 "+"="*70)print(measure_latency(model, tokenizer, payload, model.device))print("\n\n"+"="*70+" 显存占用 "+"="*70)print(os.system("nvidia-smi"))if __name__ == "__main__":run()pass

模型的时延结果:

P95延时 (ms) - 91.34029923006892; 平均延时 (ms) - 90.66 +- 0.46;

显存占用:

请添加图片描述

三、模型量化

​ 原理见【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍。

​ 量化是一种常见的模型压缩技术,核心思想是将模型参数从高精度转换为低精度。在BLOOM上使用8-bit量化只需要在调用from_pretrained时,设置参数load_in_8bit=True, device_map="auto"

​ (注:bloom在实现量化时,会按照是否超越阈值来分拆矩阵,然后对低于阈值的模型参数进行量化,这会拖慢推理速度)

# int8_test.py
import os
import transformersfrom utils import measure_latency, infer
from transformers import AutoTokenizer, AutoModelForCausalLMtransformers.logging.set_verbosity_error()
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"def run():model_name = "bigscience/bloomz-7b1-mt"payload = """参考下面的文章,然后用与文章相同的语言回答问题: 段落:当细菌突破免疫系统的防御而开始增生时,疾病会由结核菌感染进展到症状明显的结核病。在原发型结核病 (占 1-5% 的比例),这种现象会在感染刚开始的时候很快的发生。然而>多数人感染模式为潜伏结核感染,通常没有明显症状。在5-10%潜伏结合感染的案例中,这些休眠的细菌经常会在感染后数年的时间制造出活动的结核。 问题:What is the next stage after TB infection?"""max_memory_mapping = {0: "24GB", 1: "0GB"}tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto", max_memory=max_memory_mapping)model = model.eval()out = infer(model, tokenizer, payload, model.device)print("="*70+" 模型输入输出 "+"="*70)print(f"模型输入: {payload}")print(f"模型输出: {out}")print("\n\n"+"="*70+" 模型延时测试 "+"="*70)print(measure_latency(model, tokenizer, payload, model.device))print("\n\n"+"="*70+" 显存占用 "+"="*70)print(os.system("nvidia-smi"))if __name__ == "__main__":run()pass

模型的时延结果:

P95延时 (ms) - 147.89210632443428; 平均延时 (ms) - 143.30 +- 3.02;

显存占用:

请添加图片描述

四、DeepSpeed-Inference

​ DeepSpeed-Inference是分布式训练工具DeepSpeed中用户模型推理的功能。

# deepspeed_test.py
import os
import torch
import deepspeed
import transformersfrom utils import measure_latency, infer
from transformers import AutoTokenizer, AutoModelForCausalLMtransformers.logging.set_verbosity_error()
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"def run():model_name = "bigscience/bloomz-7b1-mt"payload = """参考下面的文章,然后用与文章相同的语言回答问题: 段落:当细菌突破免疫系统的防御而开始增生时,疾病会由结核菌感染进展到症状明显的结核病。在原发型结核病 (占 1-5% 的比例),这种现象会在感染刚开始的时候很快的发生。然而>多数人感染模式为潜伏结核感染,通常没有明显症状。在5-10%潜伏结合感染的案例中,这些休眠的细菌经常会在感染后数年的时间制造出活动的结核。 问题:What is the next stage after TB infection?"""tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)model = deepspeed.init_inference(model=model,      # Transformers模型mp_size=2,        # 模型并行数量dtype=torch.float16, # 权重类型(fp16)replace_method="auto", # 让DS自动替换层replace_with_kernel_inject=True, # 使用kernel injector替换)out = infer(model, tokenizer, payload, model.module.device)print("="*70+" 模型输入输出 "+"="*70)print(f"模型输入: {payload}")print(f"模型输出: {out}")print("\n\n"+"="*70+" 模型延时测试 "+"="*70)print(measure_latency(model, tokenizer, payload, model.module.device))print("\n\n"+"="*70+" 显存占用 "+"="*70)print(os.system("nvidia-smi"))if __name__ == "__main__":run()pass

这里不能使用python来自动脚本,需要使用下面的命令:

deepspeed --num_gpus 2 --master_port 60000 deepspeed_test.py

模型的时延结果:

P95延时 (ms) - 31.88958093523979; 平均延时 (ms) - 30.75 +- 0.64;

显存占用:

请添加图片描述

五、BMInf

​ BMInf能够在单张显卡下加载完整的模型,但是推理速度非常慢(应该是利用了Offload技术)。

import os
import bminf
import transformersfrom utils import measure_latency, infer
from transformers import AutoTokenizer, AutoModelForCausalLMtransformers.logging.set_verbosity_error()
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"def run():model_name = "bigscience/bloomz-7b1-mt"payload = """参考下面的文章,然后用与文章相同的语言回答问题: 段落:当细菌突破免疫系统的防御而开始增生时,疾病会由结核菌感染进展到症状明显的结核病。在原发型结核病 (占 1-5% 的比例),这种现象会在感染刚开始的时候很快的发生。然而>多数人感染模式为潜伏结核感染,通常没有明显症状。在5-10%潜伏结合感染的案例中,这些休眠的细菌经常会在感染后数年的时间制造出活动的结核。 问题:What is the next stage after TB infection?"""tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)model = model.eval()model = bminf.wrapper(model, quantization=False, memory_limit=8 << 30)out = infer(model, tokenizer, payload, model.device)print("="*70+" 模型输入输出 "+"="*70)print(f"模型输入: {payload}")print(f"模型输出: {out}")print("\n\n"+"="*70+" 模型延时测试 "+"="*70)print(measure_latency(model, tokenizer, payload, model.device))print("\n\n"+"="*70+" 显存占用 "+"="*70)print(os.system("nvidia-smi"))if __name__ == "__main__":run()pass

模型的时延结果:

P95延时 (ms) - 719.2403690889478; 平均延时 (ms) - 719.05 +- 0.14;

显存占用:

请添加图片描述

六、结论

  • DeepSpeed-Inference的速度是最快的;
  • 张量并行比自带的层并行快一些;
  • 8 bit量化虽然速度慢一些,但是能够实现单卡推理;
  • BMInf虽然速度最慢,但是其可能在不损失模型精度的情况下,单卡推理;

说明

  • 本文并不是这些推理工具的最佳实践,仅是罗列和展示这些工具如何使用;
  • 这些工具从不同的角度来优化模型推理,对于希望进一步了解具体如何实现的人来说,可以阅读源代码;
http://www.dinnco.com/news/47105.html

相关文章:

  • 在本地做的网站怎么修改域名网站怎么做
  • 化工企业网站模板 aspx衡阳网站优化公司
  • 苏州企业网站制作开发seo详细教程
  • 营业执照办理咨询电话优化设计电子课本下载
  • 怎么用ps做购物网站百度框架户一级代理商
  • 自己建一个网站难吗把百度网址大全设为首页
  • 同城58招聘信息sem与seo
  • 网站建设 面试seo l
  • 做订单管理网站用什么软件中国的网络营销公司
  • 自己做网站赚钱吗可以免费网络推广网站
  • 微信推广工具seo优缺点
  • 做门户网站用什么模板好制作网站的基本步骤
  • 返利网站制作百度网盘在线登录入口
  • 个人成立公司怎么做企业网站象山关键词seo排名
  • 网站建设技术招聘最近发生的新闻事件
  • 东莞防疫最新公告台州百度快照优化公司
  • C4D有哪些做模型的网站百度客服电话24小时
  • 用ps做网站页面trinseo公司
  • 精美网站欣赏网站关键词优化排名技巧
  • 网站 加域名信息流广告的特点
  • 微网站免费建站系统商城网站开发公司
  • 网站的流量是什么意思上海网站推广系统
  • 如何用织梦cms做网站免费下载百度seo
  • 北京专业做网站seo技术员
  • 网络营销网站建设知识学校网站模板
  • 网站后台管理系统cms今日头条新闻在线看
  • .net网站吃内存雅诗兰黛网络营销策划书
  • 广州企业网站建设费用产品软文范例软文
  • 网站读取错误时怎样做网络营销的四个步骤
  • 网站qq聊天代码百度最新版下载