当前位置: 首页 > news >正文

wordpress创建多站点网站制作工具

wordpress创建多站点,网站制作工具,互动力 网站建设,做婚介网站可行性报告前言 使用XTuner 微调个人小助手认知 一、下载模型 #安装魔搭依赖包 pip install modelscope新建download.py内容如下 其中Shanghai_AI_Laboratory/internlm2-chat-1_8b是魔搭对应的模型ID cache_dir/home/aistudio/data/model’为指定下载到本地的目录 from modelscope im…

前言

使用XTuner 微调个人小助手认知

一、下载模型

#安装魔搭依赖包
pip install modelscope
  1. 新建download.py内容如下
    其中Shanghai_AI_Laboratory/internlm2-chat-1_8b是魔搭对应的模型ID
    cache_dir='/home/aistudio/data/model’为指定下载到本地的目录
from modelscope import snapshot_download
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-1_8b',cache_dir='/home/aistudio/data/model')

二、安装 XTuner

1.创建环境

#新建一个code文件夹
mkdir -p /home/aistudio/data/code
#切换到该目录下
cd /home/aistudio/data/code
#从 Github 上下载源码
git clone -b v0.1.21  https://github.com/InternLM/XTuner
#进入源码目录
cd XTuner
# 执行安装
pip install -e '.[deepspeed]'

2.结果验证

xtuner version

三. 快速开始

这里我们用 internlm2-chat-1_8b 模型,通过 QLoRA 的方式来微调一个自己的小助手认知作为案例来进行演示

1.准备数据

#新建datas文件夹
mkdir -p datas
#创建json文件
touch datas/assistant.json

2.数据生成

1.新建一个xtuner_generate_assistant.py内容如下
2.修改neme由“伍鲜同志”改为“阿豪”
3.修改数据写入路径为刚刚创建的json文件

import json# 设置用户的名字
name = '阿豪'
# 设置需要重复添加的数据次数
n = 8000# 初始化数据
data = [{"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},{"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):data.append(data[0])data.append(data[1])# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:# 使用json.dump方法将数据以JSON格式写入文件# ensure_ascii=False 确保中文字符正常显示# indent=4 使得文件内容格式化,便于阅读json.dump(data, f, ensure_ascii=False, indent=4)

3.初始化数据

#执行
python xtuner_generate_assistant.py 

在这里插入图片描述

4.获取训练脚本

xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .

修改内容如下

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig)from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/mnt/workspace/model/Shanghai_AI_Laboratory/internlm2-chat-1_8b'
use_varlen_attn = False# Data
alpaca_en_path = '/mnt/workspace/code/datas/assistant.json'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True# parallel
sequence_parallel_size = 1# Scheduler & Optimizer
batch_size = 1  # per_device
accumulative_counts = 16
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03# Save
save_steps = 500
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ['请介绍一下你自己', 'Please introduce yourself'
]#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,padding_side='right')model = dict(type=SupervisedFinetune,use_varlen_attn=use_varlen_attn,llm=dict(type=AutoModelForCausalLM.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=dict(type=BitsAndBytesConfig,load_in_4bit=True,load_in_8bit=False,llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type='nf4')),lora=dict(type=LoraConfig,r=64,lora_alpha=16,lora_dropout=0.1,bias='none',task_type='CAUSAL_LM'))#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)sampler = SequenceParallelSampler \if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=alpaca_en,sampler=dict(type=sampler, shuffle=True),collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='float16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),dict(type=EvaluateChatHook,tokenizer=tokenizer,every_n_iters=evaluation_freq,evaluation_inputs=evaluation_inputs,system=SYSTEM,prompt_template=prompt_template)
]if use_varlen_attn:custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)

5.开启训练

xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微调前

在这里插入图片描述
在这里插入图片描述

6. 模型格式转换

pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

在这里插入图片描述

7.模型合并

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

在这里插入图片描述

8.测试效果

python -m streamlit run xtuner_streamlit_demo.py 

在这里插入图片描述

http://www.dinnco.com/news/48168.html

相关文章:

  • 武汉营销型网站百度推广销售员的工作内容
  • 宜昌网站建设开发费用网站查询访问
  • 公司网站建立的建议学生个人网页制作代码
  • 作文生成器网站云客网平台
  • 上海网站制作公司报价磁力蜘蛛
  • 顺的网站建设信息什么是百度快照
  • 色彩设计网站seo公司后付费
  • 沧州网站优化谷歌官方网站首页
  • 重庆做兼职哪个网站六年级上册数学优化设计答案
  • 松原做招聘的网站有哪些seo求职
  • 档案互动网站建设软文推送
  • 赤峰做企业网站公司小程序制作一个需要多少钱
  • 工信部备案网站查询女装标题优化关键词
  • 郑州设计师网站大全阜阳seo
  • 学做网站学费怎么制作小程序
  • 哪些网站是做批发的郑州百度推广公司
  • 青海公司网站建设哪家好广州今日刚刚发生的新闻
  • 网页前端做购物网站的实训报告制作公司网站的步骤
  • 网站是如何制作的手机百度免费下载
  • wordpress 响应 主题系统优化软件有哪些
  • vs用户登录注册网站建设代码软文推广营销服务平台
  • 做游戏ppt下载网站有哪些四川seo关键词工具
  • wordpress批量导入tag上海seo公司排名
  • 化州网站建设社交媒体营销案例
  • 工信部网站备案号查询开发客户的70个渠道
  • 柬埔寨网赌网站开发深圳谷歌优化seo
  • 网站建设丶seo优化搜索引擎优化排名优化培训
  • 0539 网站抖音seo关键词排名技术
  • wordpress列表页不显示图片seo是什么姓
  • 男性问题免费咨询济南网站seo公司