当前位置: 首页 > news >正文

信阳网站开发经典软文案例或软文案例

信阳网站开发,经典软文案例或软文案例,php网站攻击,北京免费网站建设模板目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 Huffman编码算法步骤 4.2 Huffman编码的数学原理 4.3 基于Huffman编解码的图像压缩 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..…

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Huffman编码算法步骤

4.2 Huffman编码的数学原理

4.3 基于Huffman编解码的图像压缩

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.........................................................................
for ij = 1:size(I0,3) I     = I0(:,:,ij);[m,n] = size(I); % 将当前通道的图像展平为一维向量  Ivect = I(:);% 获取当前通道的唯一像素值和它们的频率  symb  = single(unique(Ivect)); cnts  = hist(Ivect, symb); Probs = double(cnts) ./ sum(cnts); % 计算Huffman编码字典和平均长度  [dictionary,Lens(ij)] = func_huffdict(symb,Probs); % 对当前通道的图像进行Huffman编码  Ienc                  = func_huffencode(symb,dictionary,Ivect); % 对Huffman编码进行解码,得到无损压缩后的像素值  Idec                  = func_huffdecode(symb,dictionary,Ienc);% 将解码后的一维向量重塑为二维图像  Iout(:,:,ij)          = reshape(Idec,m,[]);
end% 将无损压缩后的图像保存为JPEG格式  
imwrite(Iout,'cmps.jpeg'); 
% 显示图像及其相关信息 
figure; 
Isize1      = imfinfo(Names).FileSize;
Isize2      = (Isize1*(sum(Lens(:))/3))/8; 
CmpRates    = 100*((Isize1 - Isize2)/Isize1); subplot(1,2,1);
imshow(I0); 
title(sprintf("原图 \n 容量: "+ Isize1/(1024*1024) + " MB"));subplot(1,2,2);
imshow(Iout); 
title(sprintf("压缩图 \n 容量: "+ Isize2/(1024*1024) + " MB \n 压缩率: "+CmpRates+"%%]"));
96

4.算法理论概述

        Huffman编码是一种用于无损数据压缩的熵编码算法。由David A. Huffman在1952年提出。该算法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。

4.1 Huffman编码算法步骤

初始化:根据符号概率的大小顺序对符号进行排序,即按概率大小排序,得到符号序列。
创建节点:将概率最小的两个节点相加,并作为一个新节点,新节点的概率为这两个节点概率之和。然后,将这两个节点从概率队列中删除,将新节点插入队列中。
更新队列:重复上一步骤,直到队列中只剩下一个节点为止。此时,这个节点就是Huffman树的根节点。
生成编码:从根节点开始,向左的边标记为0,向右的边标记为1。然后,从根节点到每个叶节点的路径就构成了该叶节点对应符号的Huffman编码。


4.2 Huffman编码的数学原理

       Huffman编码的数学原理主要基于信息论中的熵的概念。熵是一个用于度量随机变量不确定性的量。对于一个离散随机变量X,其熵H(X)定义为:

        Huffman编码的主要思想是,对于出现概率高的符号,赋予较短的编码;对于出现概率低的符号,赋予较长的编码。这样,平均码长就会接近熵的下界,从而实现高效的无损压缩。

4.3 基于Huffman编解码的图像压缩

       在图像压缩中,首先需要将图像数据转换为一系列符号。这可以通过多种方式实现,例如可以将像素值作为符号,或者将像素值的差值作为符号。然后,统计这些符号的出现概率,并使用Huffman编码算法生成对应的Huffman编码。最后,将编码后的数据以及Huffman树的结构信息一起存储或传输。

       解码时,首先读取Huffman树的结构信息,重建Huffman树。然后,根据Huffman树对编码后的数据进行解码,得到原始的符号序列。最后,将符号序列转换回图像数据。

       Huffman编码是一种非常有效的无损数据压缩算法,特别适用于处理具有不同出现概率的符号序列。在图像压缩中,通过将图像数据转换为符号序列,并使用Huffman编码对符号进行压缩,可以实现较高的压缩比和较好的图像质量。同时,由于Huffman编码是无损的,因此解压后的图像与原始图像完全一致,不会引入任何失真。

5.算法完整程序工程

OOOOO

OOO

O

http://www.dinnco.com/news/50907.html

相关文章:

  • 品牌创建和品牌建设区别运城seo
  • 西安建设网站公司十大广告公司
  • wordpress 删除小工具武汉seo公司哪家好
  • 泰州专业网站制作公司seo数据监控平台
  • 如何给公司网站做优化什么是指数基金
  • 哪里有做网站技术信息流广告案例
  • 漳平建设局网站网站营销策划
  • 青岛网络科技有限公司企业站seo报价
  • ubantu 编辑wordpress搜索seo优化托管
  • 企业简介模板pptseo前线
  • 成都网站建设 培训班网站建设公司哪个好呀
  • 建设部网站13清单克州seo整站排名
  • 知识付费商城源码seo推广方法
  • 著名的wordpress网站广州网络推广服务商
  • 南昌好的做网站的公司百度竞价点击神器
  • 太原顶呱呱做网站地址电话seo排名平台
  • 版权申请网站正规网站优化哪个公司好
  • 网站的图形拖拽验证码怎么做的建网站找哪个平台好呢
  • 重庆域名注册官网福州百度关键词优化
  • wordpress修改用户资料seo收费标准
  • 海外加速器免费seo网站自动推广
  • 桂林微信网站开发河北seo推广方案
  • 史志网站建设泉州网站关键词排名
  • it运维管理开封seo推广
  • 邢台高端网站建设北京seo培训机构
  • 邢台建设银行网站百度经验悬赏令
  • 鹿城做网站千锋教育北京校区
  • 做it题的网站微信推广方案
  • 网站屏蔽ip地址sem搜索
  • 包头网站优化优化大师电视版