当前位置: 首页 > news >正文

好网站你知道的企业网站推广优化

好网站你知道的,企业网站推广优化,做博客网站的php代码,长沙app定制开发①、最长递增子序列 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序…

①、最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

事例:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

思路:

       使用动态规划,dp含义:dp[i]表示数组nums到下标为i时的最长递增子序列,由于涉及到删除数字,故每个数字都应该往前面比较,故在赋值时,应取dp[i]和dp[j] + 1的最大值。

动态规划:

        dp定义及含义:dp[i]表示到nums[i]时的最长递增子序列

        状态转移方程:if(nums[i] == nums[j])   dp[i] = Math.max(dp[i],dp[j] + 1) j为0到i - 1

       初始化:全部填充为1 因为不包括空集

        遍历顺序:外层遍历数组,内层遍历0到i - 1

        dp中的最大值即为答案。

代码:

public int lengthOfLIS(int[] nums) {if(nums.length == 1) return 1;int[] dp = new int[nums.length];Arrays.fill(dp,1);int res = 1;for(int i = 1;i < nums.length;i++){for(int j = 0;j < i;j++){if(nums[i] > nums[j]) dp[i] = Math.max(dp[i],dp[j] + 1);}res = Math.max(dp[i],res);}return res;}

②、最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

事例:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

思路:

        跟上一题类似,只是要求连续,使用动态规划的话,只需要在改动下状态转移方程。上一题中,内层套用for循环遍历取得最大值,本质就是跳过其中的一些数达到删除效果,这题要求连续,则删除for循环,只需与前一个数比较即可。

动态规划:

        dp定义及含义:dp[i]表示到nums[i]时的最长连续递增序列

        状态转移方程:if(dp[i] == dp[i - 1]) dp[i] = dp[i - 1] + 1

       初始化:全部填充为1 因为不包括空集

        遍历顺序:从左到右遍历数组nums

        dp中的最大值即为答案。

代码:

public int findLengthOfLCIS(int[] nums) {//动态规划// if(nums.length == 1) return 1;// int[] dp = new int[nums.length];// Arrays.fill(dp,1);// int res = 1;// for(int i = 1;i < nums.length;i++){//     if(nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;//     res = Math.max(res,dp[i]);// }// return res;int res = 1;int count = 1;for(int i = 1;i < nums.length;i++){if(nums[i] > nums[i - 1]) count++;else{res = Math.max(res,count);count = 1;}}res = Math.max(res,count);return res;}

③、最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

事例:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

思路:

        这题涉及到匹配过程,由于有两个数组,长度可能不同,则dp需要两个维度记录。创建dp数组,其中dp[i][j]表示nums1从0到i - 1与nums2从0到j - 1的最长重复子数组,其中dp[i][j]只能从dp[i - 1][j - 1]推导,且第一行和第一列没实际意义,初始化为0。

动态规划:

        dp定义及含义:dp[i][j]表示nums1从0到i - 1与nums2从0到j - 1的最长重复子数组

        状态转移方程:if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1

        初始化:第一行和第一列初始化为0

        遍历顺序:嵌套遍历两个nums数组,其中要注意i、j与数组的对应关系

        dp中的最大值即为答案。

代码:

public int findLength(int[] nums1, int[] nums2) {//二维数组int[][] dp = new int[nums1.length + 1][nums2.length + 1];int res = 0;for(int i = 1;i < nums1.length + 1;i++){for(int j = 1;j < nums2.length + 1;j++){if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;res = Math.max(res,dp[i][j]);}}return res;}

与背包问题类似:也可以转化为一维数组,此时dp[j]表示nums2从0到j与nums1的最长重复子数组,由前面的二维数组dp可看出,dp的赋值依赖于前一行或前一列的结果,故从上到下将值覆盖可以将dp简化为一维数组。套用两层for循环,如果匹配,dp[j] = dp[j - 1] + 1,不匹配则赋为0.

动态规划:

        

dp定义及含义:dp[j]表示nums2从0到j - 1与nums1的最长重复子数组

        状态转移方程:if(nums1[i - 1] == nums2[j - 1]) dp[j] = dp[j - 1] + 1

        初始化:全部初始化为0

        遍历顺序:嵌套遍历两个nums数组,先遍历nums1(作为行),再从大到小遍历nums2,避免重复比较。

        dp中的最大值即为答案。

代码:

public int findLength(int[] nums1, int[] nums2) {//二维数组// int[][] dp = new int[nums1.length + 1][nums2.length + 1];// int res = 0;// for(int i = 1;i < nums1.length + 1;i++){//     for(int j = 1;j < nums2.length + 1;j++){//         if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;//         res = Math.max(res,dp[i][j]);//     }// }// return res;//一维数组int[] dp = new int[nums2.length + 1];int res = 0;for(int i = 1;i < nums1.length + 1;i++){for(int j = nums2.length;j > 0;j--){if(nums1[i - 1] == nums2[j - 1]) dp[j] = dp[j - 1] + 1;else dp[j] = 0;res = Math.max(res,dp[j]);}}return res;}

参考:代码随想录 (programmercarl.com)

http://www.dinnco.com/news/52609.html

相关文章:

  • 360做企业网站多少钱百度竞价点击神器下载安装
  • 做游戏网站要备案吗百度网址大全下载安装
  • 青岛做网站公司哪家好网站推广与优化平台
  • 百度网址大全网站大全无锡百度快照优化排名
  • 做APP好还是建设网站好网络推广技术外包
  • 个人网站制作说明优化推广网站淄博
  • 推广普通话标语什么是seo站内优化
  • 专业网站建设服务公司哪家好引流人脉推广软件
  • 温州外贸网站制作百度百家官网入口
  • 长沙人才市场招聘网站关键词优化软件效果
  • 黄浦区seo网站建设希爱力双效片用后感受
  • 昆明网站建设排名十大最免费软件排行榜
  • 可以做直播的游戏视频网站seo优化排名营销
  • 如何做视频教程网站网络推广专员岗位职责
  • 云服务器可以放几个网站企业查询软件
  • 帮做网站的公司西安外包公司排行
  • 抚州建设网站的公司百度商家
  • 广州开发区人才工作集团有限公司seo模拟点击
  • 创建一个网站需要怎么做seo查询工具网站
  • 浦东新区做网站公司电商运营推广的方式和渠道有哪些
  • 沂水网站优化推广友情链接交换软件
  • 优秀网站设计欣赏图片网络软文名词解释
  • 网站建设新手2024年最新一轮阳性症状
  • 电商网站开发模板郑州seo方案
  • html5企业网站案例站长平台网站
  • 做网站编辑工作好不好常见的网络推广方法有哪些
  • 郎溪做网站什么关键词能搜到资源
  • 网站服务公司特点站长之家ip地址归属查询
  • 做教育的网站有哪些内容吗百度网盘搜索免费资源
  • 网站建设数据中心佛山seo培训机构