当前位置: 首页 > news >正文

织梦网站内容自动更新企业推广方式有哪些

织梦网站内容自动更新,企业推广方式有哪些,网站怎么办,做装修哪个网站推广好文章目录 题目1584.连接所有点的最小费用 最小生成树MST,有两种算法进行求解,分别是Kruskal算法和Prim算法Kruskal算法从边出发,适合用于稀疏图Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始&#…

文章目录

  • 题目
    • 1584.连接所有点的最小费用

  • 最小生成树MST,有两种算法进行求解,分别是Kruskal算法Prim算法
  • Kruskal算法从边出发,适合用于稀疏图
  • Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始,逐步扩展生成树,每次选择一条连接已选顶点和未选顶点的最小权重边,直到所有顶点都被包含在生成树中。

Prim算法的基本步骤:

  • 初始化:选择一个起始顶点,将其加入生成树中。
  • 选择最小边:在所有连接生成树中顶点和未加入生成树的顶点的边中,选择权重最小的边。
  • 扩展生成树:将这条边及其连接的未加入顶点加入生成树。
  • 重复:重复步骤2和步骤3,直到所有顶点都加入生成树。

与求解最短路径的Dijkstra算法的求解思路是有异曲同工之妙的

  • Prim 算法的朴素模版,时间复杂度 O ( n 2 ) O(n^2) O(n2)
# 该模版可以求解最小生成树的权值ans = 0# done[i]表示节点i到最小生成树的最小距离是否确定done = [False]*n # 注意,现在并没有设置done[0]=Truedis = [float('inf')]*ndis[0] = 0# 构建最小生成树for i in range(n):m = float('inf')# 还没在树中,并且到达树的距离最小的节点for j in range(n):if not done[j] and (node < 0 or dis[j] < dis[node]):node = jdone[node] = True# 累加情况ans += dis[node]# 更新node的邻居的情况for neigh in range(n):if not done[neigh] and edge[node][neigh] < dis[neigh]:dis[neigh] = edge[node][neigh]return ans
  • Kruakal算法是从边出发,一直合并不与当前节点形成环的边,时间复杂度 O ( e l o g e ) O(eloge) O(eloge),e是边数
  • Kruskal算法模版
        # 先按照距离排序edge.sort(key=lambda x:x[0])# 使用并查集parent = list(range(n))def find(index):if parent[index] != index:parent[index] = find(parent[index])return parent[index]def union(index1,index2):parent[find(index1)] = find(index2)ans = 0count = 0 # 计数器# 对边进行遍历for d,x,y in edge:fx,fy = find(x),find(y)# 当属于同一个祖先就不要,不然会形成环if fx == fy:continueans += d# 更新计数器count+=1union(x,y)# 如何合并了n-1的边,就结束if count == n-1:breakreturn ans

题目

1584.连接所有点的最小费用

1584.连接所有点的最小费用

在这里插入图片描述

思路分析:最小生成树的模版题目

  • 使用Prim算法模版题
class Solution:def minCostConnectPoints(self, points: List[List[int]]) -> int:# 有两种实现方式,分别是Kruskal算法和Prim 算法# Kruskal算法从边出发,适合用于稀疏图,prim算法从点出发,适合用于稠密图n = len(points)# 先构建邻接表edge = [[float('inf')]*n for _ in range(n)]for i in range(n):x1,y1 = points[i]for j in range(i+1,n):x2,y2 = points[j]d = abs(x1-x2)+abs(y1-y2)edge[i][j] = d edge[j][i] = d # 该模版可以求解最小生成树的权值ans = 0# done[i]表示节点i到最小生成树的最小距离是否确定done = [False]*n # 注意,现在并没有设置done[0]=Truedis = [float('inf')]*ndis[0] = 0# 构建最小生成树for i in range(n):m = float('inf')# 还没在树中,并且到达树的距离最小的节点for j in range(n):if not done[j] and (node < 0 or dis[j] < dis[node]):node = jdone[node] = True# 累加情况ans += dis[node]# 更新node的邻居的情况for neigh in range(n):if not done[neigh] and edge[node][neigh] < dis[neigh]:dis[neigh] = edge[node][neigh]return ans
  • 使用Kruskal算法模版
class Solution:def minCostConnectPoints(self, points: List[List[int]]) -> int:# 有两种实现方式,分别是Kruskal算法和Prim 算法# Kruskal算法从边出发,适合用于稀疏图,prim算法从点出发,适合用于稠密图# 使用Kruskal,从边出发n = len(points)edge = []# 将全部的边都加入这个edgefor i in range(n):x1,y1 = points[i]for j in range(i+1,n):x2,y2 = points[j]d = abs(x1-x2)+abs(y1-y2)edge.append((d,i,j))# 先按照距离排序edge.sort(key=lambda x:x[0])# 使用并查集parent = list(range(n))def find(index):if parent[index] != index:parent[index] = find(parent[index])return parent[index]def union(index1,index2):parent[find(index1)] = find(index2)ans = 0count = 0 # 计数器for d,x,y in edge:fx,fy = find(x),find(y)if fx == fy:continueans += dcount+=1union(x,y)if count == n-1:breakreturn ans
http://www.dinnco.com/news/53334.html

相关文章:

  • 网站建设制作汕头百度网盘在线登录入口
  • 做电商必须知道的网站百度seo推广
  • wordpress注册接口seo优化方案项目策划书
  • 代码编辑器做热点什么网站好友情链接还有用吗
  • 张家港网站设计有吗软件推广的渠道是哪里找的
  • 武夷山网站建设免费的自助建站
  • 网站建设依据搜索引擎营销特点
  • 深圳租赁住房和建设局网站民宿平台搜索量上涨
  • 网站开发用框架开发的优缺点seo免费教程
  • 淘宝优惠券网站怎么做的百度代运营公司
  • 南阳网站seo推广公司网站设计流程
  • 衡水网站建设广州百度
  • 做网站哪些我要下载百度
  • 写出网站开发的基本流程万网域名查询
  • 公司的网站建设费用属于什么费中国疾控卫生应急服装
  • 仿网站制作教学视频企业门户网站的设计与实现
  • 成都网站建设公司排名代理公司注册
  • 镇江疾控紧急提醒爱站网seo工具包
  • 哪个网站做自媒体比较好西安自动seo
  • 邓州网站建设怎样策划一个营销型网站
  • win7 网站系统怎么做鹤壁seo
  • 长沙做网站一般多少钱合适win10优化大师好用吗
  • 政府机构的网站怎么做的那么差近三年成功的营销案例
  • 做个动态网站多少钱新冠疫苗接种最新消息
  • wordpress如何才能自己登陆进入自己的网站 进行修改呢360公司官网首页
  • 郑州睿网站建设安卓优化大师清理
  • 网站开发工作描述如何营销推广自己的产品
  • 独立做网站前后端百度网站收录查询
  • 专业网站建设电话营销技巧和营销方法培训
  • 做网站公司没签合同网络营销平台名词解释