当前位置: 首页 > news >正文

免费活动策划方案的网站seo公司多少钱

免费活动策划方案的网站,seo公司多少钱,网站微信支付怎么做,达令的网站建设目录 前言 一、list 的使用 1、构造函数 2、迭代器 3、增删查改 4、其他函数使用 二、list 的模拟实现 1、节点的创建 2、push_back 和 push_front 3、普通迭代器 4、const 迭代器 5、增删查改(insert、erase、pop_back、pop_front) 6、构造函数和析构函数 6.1、默认构造…

目录

前言

一、list 的使用

 1、构造函数

2、迭代器

3、增删查改

4、其他函数使用

二、list 的模拟实现

 1、节点的创建

 2、push_back 和 push_front

 3、普通迭代器

 4、const 迭代器

 5、增删查改(insert、erase、pop_back、pop_front)

 6、构造函数和析构函数

  6.1、默认构造

  6.2、构造 n 个 val 的对象

  6.3、拷贝构造

  6.4、迭代器区间构造

  6.5、 赋值运算符重载

  6.6、析构函数

三、list 模拟实现源代码

四、list 的迭代器失效

五、list 和 vector的对比


前言

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。
  3. list 与 forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list 通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问.

一、list 的使用

 1、构造函数

构造函数接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list
int main()
{// 默认构造list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);// 拷贝构造list<int> lt2(lt);// 构造 n 个节点list<int> lt3(5, 1);// 迭代器区间构造list<int> lt4(lt.begin(), lt.end());return 0;
}

2、迭代器

函数声明接口说明
begin + end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置
int main()
{int a[] = { 1,2,3,4,5,6,7,8,9 };list<int> lt(a, a + 9);auto it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;return 0;
}

迭代器一般是用来遍历和查找的; 

而反向迭代器的使用是类似的,只不过调用的函数换成了 rbegin 和 rend 。

注意:反向迭代器的迭代使用的也是++。但迭代器区间一样是[rbegin, rend);

3、增删查改

函数声明接口说明
push_front在list首元素前插入值为 val 的元素
pop_front删除 list 中第一个元素
push_back在list尾部插入值为 val 的元素
pop_back删除 list 中最后一个元素
insert在list position 位置中插入值为 val 的元素
erase删除list position 位置的元素
swap交换两个 list 中的元素
clear清空 list 中的有效元素
int main()
{vector<int> v = { 1,2,3,4,5,6,7,8,9 };list<int> lt(v.begin(), v.end());for (auto e : lt) cout << e << " ";cout << endl;lt.push_front(10);lt.push_back(20);for (auto e : lt) cout << e << " ";cout << endl;lt.pop_front();lt.pop_back();for (auto e : lt) cout << e << " ";cout << endl;auto pos = find(lt.begin(), lt.end(), 5);lt.insert(pos, 50);for (auto e : lt) cout << e << " ";cout << endl;pos = find(lt.begin(), lt.end(), 8);lt.erase(pos);for (auto e : lt) cout << e << " ";cout << endl;return 0;
}

4、其他函数使用

函数声明接口说明
empty检测 list 是否为空,是返回 true ,否则返回 false
size返回 list 中有效节点的个数
front返回 list 的第一个节点中值的引用
back返回 list 的最后一个节点中值的引用

二、list 的模拟实现

 1、节点的创建

template<class T>
struct list_node//节点
{list_node<T>* _next;list_node<T>* _prev;T _data;// 构造函数list_node(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}
};

   由于节点存储的数据可能是任意类型,所以我们需要将将节点定义为模板类。这里我们需要写一个给缺省值的默认构造函数,便于之后在主类中new一个新节点时直接初始化,同时将两个指针置为空,将数据写入数据域中。

 2、push_back 和 push_front

class list 
{
public:typedef list_node<T> node;private:node* _head;
}
//尾插
void push_back(const T& x) const
{node* new_node = new node(x);node* tail = _head->_prev;//链接节点之间的关系tail->_next = new_node;new_node->_prev = tail;new_node->_next = _head;_head->_prev = new_node;
}
//头插
void push_front(const T& x)
{node* head = _head->_next;node* new_node = new node(x);_head->_next = new_node;new_node->_prev = _head;new_node->_next = head;head->_prev = new_node;
}

 这里模拟的头插和尾插也很简单,因为和我们之前在数据结构时候的双向循环链表是一样的,只需要找到头或者尾,然后链接四个节点间的关系即可。

 3、普通迭代器

注意:list 的迭代器是自定义类型,不是原生指针node*。

迭代器为自定义类型,其中*,++等都是通过运算符重载来完成的。

所以我们需要重载的符号:*,->,前置++,后置++,前置--,后置--,!=,==

template<class T>
struct __list_iterator
{typedef list_node<T> node;typedef __list_iterator<T> self;node* _node;//构造函数__list_iterator(node* n):_node(n){}//重载*运算符T& operator*(){return _node->_val;}T* operator->(){return &_node->_data;}//重载前置++运算符self& operator++(){_node = _node->_next;return *this;}//重载后置++运算符self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}//重载前置--运算符self& operator--(){_node = _node->_prev;return *this;}//重载后置--运算符self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}//重载!=运算符bool operator!=(const self& s){return _node != s._node;}//重载==运算符bool operator==(const self& s){return _node == s._node;}
};

 此处我实现了一个简单的正向迭代器,使用一个模板参数T表示类型。

 当普通迭代器封装好了之后,我们需要在list类中来实现它的 begin() 和 end() 方法。由于迭代器的名字一般都是 iterator,而且对于范围for来说,也只能通过 iterator 来转换为迭代器进行遍历。所以这里我们将其typedef为iterator。

template<class T>
class list//链表
{typedef list_node<T> node;
public:typedef __list_iterator<T> iterator;iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);}
private:node* _head;
};

 4、const 迭代器

  const迭代器与普通迭代器的区别在于const迭代器指向的内容是不能修改的,但是它的指向是可以修改的。

template<class T>
class list//链表
{typedef list_node<T> node;
public:typedef __list_const_iterator<T> const_iterator;const_iterator begin(){return const_iterator(_head->_next);}const_iterator end(){return const_iterator(_head);}
private:node* _head;
};

  我们最好的做法就是在__list_iterator 的类模板中的添加两个模板参数,然后再 list 类中 typedef 两份分别将第二个参数分别改成 T& 和 const T& 的类型,本质上就是让编译器根据传入的 Ref 的不同来自动示例化出 const 迭代器类,而我们还需要重载一个->运算符,因为list中可能存储的是自定义类型,这个自定义类型如果要是有多个成员变量的话,我们就需要使用->来解引用访问成员变量,同样还是要区分普通迭代器和const 迭代器,所以就增加了另一个模版参数 Ptr。具体的解决做法如下:

template<class T, class Ref, class Ptr>
struct __list_iterator
{typedef list_node<T> node;typedef __list_iterator<T, Ref, Ptr> self;node* _node;__list_iterator(node* n):_node(n){}Ref operator*()//解引用{return _node->_data;}Ptr operator->(){return &_node->_data;}...
};

然后,最终在链表类中使用如下:

template<class T>
class list//链表
{typedef list_node<T> node;
public:typedef __list_iterator<T, T&, T*> iterator;//普通迭代器typedef __list_iterator<T, const T&, const T*> const_iterator;//const迭代器iterator begin(){return iterator(_head->_next);//匿名对象的返回}const_iterator begin() const{return const_iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator end() const{return const_iterator(_head);}
private:node* _head;
};

 5、增删查改(insert、erase、pop_back、pop_front)

// 指定位置插入
void insert(iterator pos, const T& x)
{node* cur = pos._node;node* prev = cur->_prev;node* new_node = new node(x);prev->_next = new_node;new_node->_prev = prev;new_node->_next = cur;cur->_prev = new_node;
}
// 指定位置删除
iterator erase(iterator pos)
{assert(pos != end());node* prev = pos._node->_prev;node* next = pos._node->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);
}
// 尾删
void pop_back()
{erase(--end());
}
// 头删
void pop_front()
{erase(begin());
}

 6、构造函数和析构函数

  6.1、默认构造

  由于后面会频繁对空进行初始化,所以在这里对它进行了封装,方便后面的调用。

void empty_init()//空初始化
{_head = new node;_head->_next = _head;_head->_prev = _head;
}
list()
{empty_init();
}

  6.2、构造 n 个 val 的对象

//用n个val构造对象
list(int n, const T& val = T())
{empty_init();for (int i = 0; i < n; i++){push_back(val);}
}

  6.3、拷贝构造

//拷贝构造传统写法
list(const list<T>& lt)
{empty_init();for (auto e : lt){push_back(e);}
}
//拷贝构造现代写法
list(const list<T>& lt)
{empty_init();list<T> tmp(lt.begin(), lt.end());swap(tmp);
}

  6.4、迭代器区间构造

template <class Iterator>
list(Iterator first, Iterator last)
{empty_init();while (first != last){push_back(*first);++first;}
}

  6.5、 赋值运算符重载

//赋值运算符重载
list<T>& operator=(list<T> lt)//注意这里不能用引用
{swap(lt);return *this;
}

  6.6、析构函数

//要全部清理掉
~list()
{clear();delete _head;_head = nullptr;
}
//不释放头结点
void clear()
{iterator it = begin();while (it != end()){it = erase(it);//这样也可以//erase(it++);}
}

三、list 模拟实现源代码

template<class T>
struct list_node//节点
{list_node<T>* _next;list_node<T>* _prev;T _data;list_node(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}
};
template<class T, class Ref, class Ptr>
struct __list_iterator
{typedef list_node<T> node;typedef __list_iterator<T, Ref, Ptr> self;node* _node;__list_iterator(node* n):_node(n){}Ref operator*()//解引用{return _node->_data;}Ptr operator->(){return &_node->_data;}//前置++self& operator++(){_node = _node->_next;return *this;}//后置++self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}//前置--self& operator--(){_node = _node->_prev;return *this;}//后置--self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}
};
template<class T>
class list//链表
{typedef list_node<T> node;
public:typedef __list_iterator<T, T&, T*> iterator;//普通迭代器typedef __list_iterator<T, const T&, const T*> const_iterator;//const迭代器iterator begin(){return iterator(_head->_next);//匿名对象的返回}const_iterator begin() const{return const_iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator end() const{return const_iterator(_head);}void empty_init()//空初始化{_head = new node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}//迭代器区间构造template <class Iterator>list(Iterator first, Iterator last){empty_init();while (first != last){push_back(*first);//push_back使用的前提是要有哨兵位的头结点++first;}}// 交换函数void swap(list<T>& tmp){std::swap(_head, tmp._head);}//现代拷贝构造list(const list<T>& lt){list<T> tmp(lt.begin(), lt.end());swap(tmp);}//现代赋值写法list<T>& operator=(list<T> lt){swap(lt);return *this;}~list()//要全部清理掉{clear();delete _head;_head = nullptr;}void clear()//不释放头结点{iterator it = begin();while (it != end()){it = erase(it);//这样也可以//erase(it++);}}void insert(iterator pos, const T& x){node* cur = pos._node;node* prev = cur->_prev;node* new_node = new node(x);prev->_next = new_node;new_node->_prev = prev;new_node->_next = cur;cur->_prev = new_node;}iterator erase(iterator pos){assert(pos != end());node* prev = pos._node->_prev;node* next = pos._node->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);}//尾插void push_back(const T& x) const{//node* new_node = new node(x);//node* tail = _head->_prev;链接节点之间的关系//tail->_next = new_node;//new_node->_prev = tail;//new_node->_next = _head;//_head->_prev = new_node;insert(end(), x);}//头插void push_front(const T& x){//node* head = _head->_next;//node* new_node = new node(x);//_head->_next = new_node;//new_node->_prev = _head;//new_node->_next = head;//head->_prev = new_node;insert(begin(), x);}//尾删void pop_back(){erase(--end());}//头删void pop_front(){erase(begin());}
private:node* _head;
};

四、list 的迭代器失效

  当我们使用 erase 进行删除后,此时指向删除位置的迭代器就失效了,再次使用就会令程序崩溃。

  因此若要多次删除,则需要在使用后利用 erase 的返回值更新迭代器,这样使用才不会出现错误。

int main()
{vector<int> v = { 1, 2,3,5,4,6 };list<int> lt(v.begin(), v.end());list<int>::iterator pos = find(lt.begin(), lt.end(), 3);for (int i = 0; i < 3; i++){pos = lt.erase(pos);   //利用erase的返回值更新迭代器}for (auto e : lt) cout << e << " ";cout << endl;return 0;
}

五、list 和 vector的对比

vectorlist
底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表
随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素 效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂 度为O(N),插入时有可能需要增容,增容:开辟新空 间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不 需要搬移元素,时间复杂度为 O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率 高,缓存利用率高底层节点动态开辟,小节点容易 造成内存碎片,空间利用率低, 缓存利用率低
迭 代 器原生态指针对原生态指针(节点指针)进行封装
迭 代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入 元素有可能会导致重新扩容,致使原来迭代器失效,删 除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代 器失效,其他迭代器不受影响
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问


本文要是有不足的地方,欢迎大家在下面评论,我会在第一时间更正。

 

http://www.dinnco.com/news/56546.html

相关文章:

  • 精美网站制作公司石家庄最新疫情
  • 淮安哪里有做网站的100个免费推广b站
  • 广东网站建设定制乐陵seo外包
  • 建站目的域名免费查询
  • 山东网站建设哪家公司好班级优化大师头像
  • 贵阳网站建设hsyunso搜狗搜索引擎入口
  • 网站建设员工分工电商网站开发平台有哪些
  • 广东网站制作设计app推广公司
  • 茶叶网站建设网页设计制作百度云网盘官网
  • 网站建设存在困难长春网站建设策划方案
  • 如何添加网站为信任站点百度今日排行榜
  • 手机免费网站建设免费无代码开发平台
  • 广州乐地网站建设拉新推广怎么找渠道
  • 怎么可以预览自己做的网站跨境电商平台排行榜前十名
  • 南桥网站建设每日精选12条新闻
  • 合肥有什么好的网站建设公司网站搜索量查询
  • 北京新疫情最新公布消息网站推广专家十年乐云seo
  • 电子商务网站分类百度竞价排名的优缺点
  • 做的网站被公安局查出漏洞域名ip查询
  • 湛江seo网站推广高端定制网站建设
  • 东莞市品牌网站建设平台网站入口
  • 网站制作设计方案哈尔滨优化调整人员流动管理
  • 优门设 网站郑州seo优化阿亮
  • 有做直播网网站的公司没有万网阿里云域名查询
  • 吉林企业做网站速推网
  • 寻找常州微信网站建设搜索引擎的使用方法和技巧
  • 柳州企业网站开发公司优化大师官网入口
  • 怎么做卡蜜网站seo外包公司多吗
  • 网站服务器 2核网站安全检测在线
  • 网站设计用那个软件网店seo名词解释