当前位置: 首页 > news >正文

网站建设培训速成网页设计与制作知识点

网站建设培训速成,网页设计与制作知识点,苏州网站开发公司济南兴田德润地址,做商城网站要哪些流程图一、图的结构 在 C 中,图可以用多种结构表示,常见的有邻接矩阵和邻接表。 邻接矩阵 使用二维数组 adjMatrix 来表示图中顶点之间的连接关系。对于无向图,如果 adjMatrix[i][j] 不为零,则表示顶点 i 和顶点 j 之间存在边&#x…

一、图的结构

在 C++ 中,图可以用多种结构表示,常见的有邻接矩阵和邻接表。

邻接矩阵

使用二维数组 adjMatrix 来表示图中顶点之间的连接关系。对于无向图,如果 adjMatrix[i][j] 不为零,则表示顶点 i 和顶点 j 之间存在边;对于有权图,adjMatrix[i][j] 的值可以表示边的权重。对于无权图,可以用 1 表示有边,0 表示无边。

#include <iostream>
#include <vector>class GraphAdjMatrix {
private:int numVertices;std::vector<std::vector<int>> adjMatrix;
public:// 构造函数,初始化邻接矩阵GraphAdjMatrix(int vertices) : numVertices(vertices), adjMatrix(vertices, std::vector<int>(vertices, 0)) {}// 添加边void addEdge(int src, int dest, int weight = 1) {if (src >= 0 && src < numVertices && dest >= 0 && dest < numVertices) {adjMatrix[src][dest] = weight;// 对于无向图,添加反向边adjMatrix[dest][src] = weight; }}// 打印邻接矩阵void print() {for (int i = 0; i < numVertices; ++i) {for (int j = 0; j < numVertices; ++j) {std::cout << adjMatrix[i][j] << " ";}std::cout << std::endl;}}
};
邻接表

使用一个数组或向量,其中每个元素存储一个链表或向量,存储与该顶点相连的顶点。对于有权图,可以存储一个包含顶点和权重的结构体或 pair

#include <iostream>
#include <vector>class GraphAdjList {
private:int numVertices;std::vector<std::vector<int>> adjList;
public:// 构造函数,初始化邻接表GraphAdjList(int vertices) : numVertices(vertices), adjList(vertices) {}// 添加边void addEdge(int src, int dest) {adjList[src].push_back(dest);// 对于无向图,添加反向边adjList[dest].push_back(src); }// 打印邻接表void print() {for (int i = 0; i < numVertices; ++i) {std::cout << i << " -> ";for (int neighbor : adjList[i]) {std::cout << neighbor << " ";}std::cout << std::endl;}}
};

二、图的遍历

图的遍历有深度优先搜索(DFS)和广度优先搜索(BFS)两种常见方法。

深度优先搜索 (DFS)

DFS 是一种递归算法,从起始顶点开始,尽可能深地访问图的分支。

#include <iostream>
#include <vector>class GraphDFS {
private:int numVertices;std::vector<std::vector<int>> adjList;std::vector<bool> visited;// 辅助函数,进行深度优先搜索void dfsUtil(int vertex) {visited[vertex] = true;std::cout << vertex << " ";for (int neighbor : adjList[vertex]) {if (!visited[neighbor]) {dfsUtil(neighbor);}}}
public:GraphDFS(int vertices) : numVertices(vertices), adjList(vertices), visited(vertices, false) {}// 添加边void addEdge(int src, int dest) {adjList[src].push_back(dest);// 对于无向图,添加反向边adjList[dest].push_back(src); }// 执行深度优先搜索void dfs(int startVertex) {dfsUtil(startVertex);}
};
广度优先搜索 (BFS)

BFS 是一种迭代算法,从起始顶点开始,逐层访问图的顶点。

#include <iostream>
#include <vector>
#include <queue>class GraphBFS {
private:int numVertices;std::vector<std::vector<int>> adjList;std::vector<bool> visited;public:GraphBFS(int vertices) : numVertices(vertices), adjList(vertices), visited(vertices, false) {}// 添加边void addEdge(int src, int dest) {adjList[src].push_back(dest);// 对于无向图,添加反向边adjList[dest].push_back(src); }// 执行广度优先搜索void bfs(int startVertex) {std::queue<int> q;visited[startVertex] = true;q.push(startVertex);while (!q.empty()) {int vertex = q.front();q.pop();std::cout << vertex << " ";for (int neighbor : adjList[vertex]) {if (!visited[neighbor]) {visited[neighbor] = true;q.push(neighbor);}}}}
};

三、最短路径算法

有多种最短路径算法,以下是 Dijkstra 算法的实现。

Dijkstra 算法

用于求解单源最短路径问题,适用于边权为非负的图。

#include <iostream>
#include <vector>
#include <queue>
#include <climits>class GraphDijkstra {
private:int numVertices;std::vector<std::vector<std::pair<int, int>>> adjList; // pair: (neighbor, weight)std::vector<int> dijkstra(int src) {std::vector<int> dist(numVertices, INT_MAX);dist[src] = 0;std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<std::pair<int, int>>> pq;pq.push({0, src});while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto neighbor : adjList[u]) {int v = neighbor.first;int weight = neighbor.second;if (dist[u] + weight < dist[v]) {dist[v] = dist[u] + weight;pq.push({dist[v], v});}}}return dist;}
public:GraphDijkstra(int vertices) : numVertices(vertices), adjList(vertices) {}// 添加边void addEdge(int src, int dest, int weight) {adjList[src].push_back({dest, weight});}// 打印从源点出发的最短路径void printShortestPaths(int src) {std::vector<int> dist = dijkstra(src);for (int i = 0; i < numVertices; ++i) {std::cout << "Distance from " << src << " to " << i << " is " << dist[i] << std::endl;}}
};

四、搜索网页算法(PageRank 算法)

PageRank 算法用于评估网页的重要性。

#include <iostream>
#include <vector>
#include <cmath>class WebGraphPageRank {
private:int numPages;std::vector<std::vector<bool>> adjMatrix;std::vector<double> pageRank;double dampingFactor = 0.85;double tolerance = 0.0001;bool isConverged(const std::vector<double>& oldPR, const std::vector<double>& newPR) {for (int i = 0; i < numPages; ++i) {if (std::abs(oldPR[i] - newPR[i]) > tolerance) {return false;}}return true;}void updatePageRank() {std::vector<double> newPR(numPages, 0);for (int i = 0; i < numPages; ++i) {for (int j = 0; j < numPages; ++j) {if (adjMatrix[j][i]) {int outDegree = 0;for (int k = 0; k < numPages; ++k) {if (adjMatrix[j][k]) outDegree++;}newPR[i] += pageRank[j] / outDegree;}}newPR[i] = (1 - dampingFactor) / numPages + dampingFactor * newPR[i];}pageRank = newPR;}public:WebGraphPageRank(int pages) : numPages(pages), adjMatrix(pages, std::vector<bool>(pages, false)), pageRank(pages, 1.0 / pages) {}// 添加网页之间的链接void addLink(int src, int dest) {if (src >= 0 && src < numPages && dest >= 0 && dest < numPages) {adjMatrix[src][dest] = true;}}// 计算 PageRankvoid computePageRank() {std::vector<double> prevPR = pageRank;do {updatePageRank();} while (!isConverged(prevPR, pageRank));}// 打印 PageRank 值void printPageRank() {for (int i = 0; i < numPages; ++i) {std::cout << "Page " << i << " : " << pageRank[i] << std::endl;}}
};

解释

  • 图的结构表示

    • 邻接矩阵:使用二维数组,易于理解和实现,对于稠密图空间效率较高,但对于稀疏图会浪费空间。
    • 邻接表:使用数组加链表(或向量),对于稀疏图空间效率更高,但查找边时可能需要遍历链表。
  • 图的遍历

    • DFS:使用递归方式,先访问当前顶点,然后递归访问其邻居,直到无法继续深入,再回溯。
    • BFS:使用队列,先访问当前顶点,将邻居入队,按入队顺序依次访问,实现层次遍历。
  • 最短路径算法(Dijkstra)

    • 利用优先队列(最小堆)存储距离源点的距离,不断选取距离最小的顶点,更新其邻居的距离。
  • 搜索网页算法(PageRank)

    • 基于网页之间的链接关系,迭代更新每个网页的重要性得分,直到收敛。根据链接的入度和出度,结合阻尼因子计算得分。

使用示例

int main() {// 邻接矩阵示例GraphAdjMatrix g1(5);g1.addEdge(0, 1, 10);g1.addEdge(0, 2, 20);g1.addEdge(1, 2, 30);g1.addEdge(2, 3, 40);g1.print();// 邻接表示例GraphAdjList g2(5);g2.addEdge(0, 1);g2.addEdge(0, 2);g2.addEdge(1, 2);g2.addEdge(2, 3);g2.print();// DFS 示例GraphDFS g3(5);g3.addEdge(0, 1);g3.addEdge(0, 2);g3.addEdge(1, 2);g3.addEdge(2, 3);std::cout << "DFS: ";g3.dfs(0);std::cout << std::endl;// BFS 示例GraphBFS g4(5);g4.addEdge(0, 1);g4.addEdge(0, 2);g4.addEdge(1, 2);g4.addEdge(2, 3);std::cout << "BFS: ";g4.bfs(0);std::cout << std::endl;// Dijkstra 算法示例GraphDijkstra g5(5);g5.addEdge(0, 1, 10);g5.addEdge(0, 2, 20);g5.addEdge(1, 2, 30);g5.addEdge(2, 3, 40);g5.printShortestPaths(0);// PageRank 算法示例WebGraphPageRank wg(5);wg.addLink(0, 1);wg.addLink(0, 2);wg.addLink(1, 2);wg.addLink(2, 0);wg.addLink(2, 3);wg.addLink(3, 4);wg.addLink(4, 0);wg.computePageRank();wg.printPageRank();return 0;
}

总结

  • 图是一种强大的数据结构,可用于解决许多现实世界的问题,如网络路由、社交网络分析、网页搜索等。
  • 选择合适的图表示方法(邻接矩阵或邻接表)取决于图的稀疏程度。
  • 不同的遍历算法(DFS 和 BFS)适用于不同的场景,DFS 适合寻找路径和解决可达性问题,BFS 适合寻找最短路径和层次遍历。
  • 最短路径算法(如 Dijkstra)可以找到图中源点到其他点的最短路径,适用于边权非负的情况。
  • 搜索网页算法(如 PageRank)可评估网页的重要性,通过不断迭代更新得分,考虑网页之间的链接结构。
    在这里插入图片描述
http://www.dinnco.com/news/57986.html

相关文章:

  • 给公司做网站要花多钱seo搜索引擎优化到底是什么
  • 网站后台登录不进去做抖音seo排名软件是否合法
  • 代替wordpress企业网站优化
  • 境外网站 icp备案国内十大搜索引擎网站
  • 免费开源网站系统win优化大师
  • 深圳市做网站前十强关键词查找的方法有以下几种
  • 合肥网站建设费用10常用的网络营销方法
  • 完整的网站开发流程热搜榜排名今日第一
  • 科技设计网站建设四平网络推广
  • 大连网络公司联系方式长春seo招聘
  • 2017网站建设前景深圳新闻今日最新
  • 哈尔滨优质官网建站企业网站排名掉了怎么恢复
  • 谷歌做英文网站seo是什么地方
  • 多语言网站建设百度客服人工在线咨询电话
  • 大型网站技术架构:核心原理与案例分析网站优化关键词价格
  • 网址导航网站一键建设站内优化
  • 中国最近新闻大事件seo网站关键词优化方法
  • 网站制作明细清单海外网站cdn加速
  • 劳务公司网站怎么做怎么免费建立网站
  • 火车头web发布到网站google开户
  • 无锡做推广的网站长沙seo网络优化
  • app网站开发者黑帽seo论坛
  • APP客户端网站建设十大新媒体平台有哪些
  • 好兄弟csgo网站免费观看1元购买域名
  • 专业外贸网站开发网络优化公司哪家好
  • 梧州网站建设seo外链软件
  • 舞蹈培训网站模板网站关键词排名怎么提升
  • 网站开发 程序开发阶段谷歌google下载
  • 做同城服务网站比较成功的网站北京突发重大消息
  • 雨伞设计公司logo长沙关键词优化公司电话