当前位置: 首页 > news >正文

专业制作证件网站chatgpt网址

专业制作证件网站,chatgpt网址,企业做网站的注意事项,电器网站建设目的我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…

我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。

先从最简单的,都有哪些层开始学起。

Convolution Layers - 卷积层

torch.nn.Conv1d()

1维卷积层。

torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

in_channels:输入tensor的通道数;
out_channels:输出tensor的通道数;
kernel_size:卷积核的大小;
stride:步长;
padding:输入tensor的边界填充尺寸;
dilation:卷积核之间的间距(下面这个图为dilation=2),默认为1;
在这里插入图片描述

groups:从输入通道到输出通道的阻塞连接数。in_channelout_channel需要能被groups整除。更具体地:
groups=1时所有输入均与所有输出进行卷积,groups=2时该操作相当于并排设置两个卷积层,每卷积层看到一半的输入通道,产生一半的输出通道,然后将两个卷积层连接起来。groups=in_channel时输入的每个通道都和相应的卷积核进行卷积;
bias:是否添加可学习的偏差值,True为添加,False为不添加。
padding_mode:填充模式,有以下取值:zeros(这个是默认值)、reflectreplicatecircular

import torch
import torch.nn as nnm = nn.Conv1d(in_channels=16,out_channels=33,kernel_size=3,stride=2)
# input: 批大小为20,每个数据通道为16,size=50
input = torch.randn(20, 16, 50)
output = m(input)
print(output.size())

输出

# output: 批大小为20,每个数据通道为33,size=24
torch.Size([20, 33, 24])

torch.nn.Conv2d()

2维卷积层。

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.Conv2d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 5, 6)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 2, 2])

torch.nn.Conv3d()

3维卷积层。

torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.Conv3d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 4, 5, 6)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 1, 2, 2])

torch.nn.ConvTranspose1d()

1维转置卷积层。

torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。
唯一不同的是output_padding,与padding不同的是,output_padding是输出tensor的每一个边,外面填充的层数。
padding是输入tensor的每个边填充的层数)

import torch
import torch.nn as nnm = nn.ConvTranspose1d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4])

torch.nn.ConvTranspose2d()

2维转置卷积层。

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.ConvTranspose2d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4, 4])

torch.nn.ConvTranspose3d()

3维转置卷积层。

torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.ConvTranspose3d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4, 4, 4])

torch.nn.LazyConv1d()

1维延迟初始化卷积层,当in_channel不确定时可使用这个层。
关于延迟初始化,大家可以参考这篇文章,我认为讲的很好:
俱往矣… - 延迟初始化——【torch学习笔记】

torch.nn.LazyConv1d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

LazyConv1d没有in_channel参数
这不代表这个层没有输入的通道,而是在调用时自动适配,并进行初始化。
引用文章中的一段代码,改成LazyConv1d,讲述使用方法。

import torch
import torch.nn as nnnet = nn.Sequential(nn.LazyConv1d(256, 2),nn.ReLU(),nn.Linear(9, 10)
)
print(net)
[net[i].state_dict() for i in range(len(net))]low = torch.finfo(torch.float32).min / 10
high = torch.finfo(torch.float32).max / 10
X = torch.zeros([2, 20, 10], dtype=torch.float32).uniform_(low, high)
net(X)
print(net)

输出

Sequential((0): LazyConv1d(0, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)
Sequential((0): Conv1d(20, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)

可以看出,未进行初始化时,in_features=0。只有传入参数使用网络后才会根据输入进行初始化。

torch.nn.LazyConv2d()

2维延迟初始化卷积层。

torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConv3d()

3维延迟初始化卷积层。

torch.nn.LazyConv3d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose1d()

1维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose1d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose2d()

2维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose2d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose3d()

3维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose3d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.Unfold()

从一个批次的输入张量中提取出滑动的局部区域块。

torch.nn.Unfold(kernel_size, dilation=1, padding=0, stride=1)

kernel_size:滑动块的大小;
dilation:卷积核之间的间距(torch.nn.Conv1d中有图示);
padding:输入tensor的边界填充尺寸;
stride:滑块滑动的步长。

这里的输入必须是4维的tensor,否则会报这样的错误:

NotImplementedError: Input Error: Only 4D input Tensors are supported (got 2D)

示例

import torch
from torch import nnt = torch.tensor([[[[1.,  2.,  3.,  4.],[5.,  6.,  7.,  8.],[9.,  10., 11., 12.],[13., 14., 15., 16.],]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)

输出

tensor([[[ 1.,  2.,  3.,  5.,  6.,  7.,  9., 10., 11.],[ 2.,  3.,  4.,  6.,  7.,  8., 10., 11., 12.],[ 5.,  6.,  7.,  9., 10., 11., 13., 14., 15.],[ 6.,  7.,  8., 10., 11., 12., 14., 15., 16.]]])

在这里插入图片描述

torch.nn.Fold()

Unfold()的逆操作。当Unfold()时出现滑块有重复覆盖时会导致结果和原来不一样。因为Fold()的过程中对于同一个位置的元素进行加法处理。

torch.nn.Fold(output_size, kernel_size, dilation=1, padding=0, stride=1)

下面是Unfold()和Fold()结合的代码,Unfold()部分和上面代码相同。

import torch
from torch import nnt = torch.tensor([[[[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.],[13., 14., 15., 16.]]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)
fold = nn.Fold(output_size=(4, 4), kernel_size=(2, 2))
out = fold(output)
print(out)

输出

tensor([[[ 1.,  2.,  3.,  5.,  6.,  7.,  9., 10., 11.],[ 2.,  3.,  4.,  6.,  7.,  8., 10., 11., 12.],[ 5.,  6.,  7.,  9., 10., 11., 13., 14., 15.],[ 6.,  7.,  8., 10., 11., 12., 14., 15., 16.]]])
tensor([[[[ 1.,  4.,  6.,  4.],[10., 24., 28., 16.],[18., 40., 44., 24.],[13., 28., 30., 16.]]]])
http://www.dinnco.com/news/5996.html

相关文章:

  • php 移动网站开发品牌营销策划公司哪家好
  • 滕州哪里有做网站的b2b免费发布网站大全
  • 餐饮公司做网站的好处b2b关键词排名工具
  • 自己的公网ip可以做网站销售技巧和话术
  • 邯郸网站设计服务平台360识图
  • wordpress keywords免费seo在线工具
  • 嘉兴高端网站建设品牌关键词优化哪家便宜
  • flashfxp怎么做网站百度关键词点击
  • 网站制作联盟网站开发公司哪家好
  • 网站怎么做三级的做网站企业
  • 自己的电脑做网站当服务器使用刷关键词排名软件有用吗
  • 珠海网站建设网络公司怎么样站长工具seo综合查询
  • 大图模板网站网站制作企业
  • 如何加强企业网站建设 论文6品牌策略怎么写
  • 品牌网站建设c股j东大蝌蚪和业务多一样的平台
  • 自己公司做公益网站怎么弄seo排名赚挂机
  • wordpress搜索功能优化网络优化大师
  • 百度联盟的网站怎么做百青藤广告联盟
  • 保姆给老人做爰神马网站承德seo
  • 辽阳网站建设公司百度推广多少钱一天
  • 口碑好的o2o网站建设百度app下载官方免费下载安装
  • 北京网站建设公司兴田德润专业淘宝网页版
  • 广宏建设集团有限公司网站西安网站优化推广方案
  • 扁平式网站源码上海最新新闻
  • 毕设做网站太简单外链网盘源码
  • 北京架设网站网络推广方式主要有
  • linux网站环境seo系统优化
  • 服务行业做网站舆情服务公司
  • 珠海建站谷歌推广培训
  • 外汇网站怎么做优化google官方入口