当前位置: 首页 > news >正文

深圳网站优化方法百度竞价推广登录入口

深圳网站优化方法,百度竞价推广登录入口,吴江区城乡建设管理局网站,网站优化公司 网络服务背景 闲来无事翻了一下之前买的一个机器学习课程及之前记录的网络笔记,发现遇到公式都是截图,甚至是在纸上用笔推导的。重新整理一遍之前逻辑回归函数的学习笔记,主要是为了玩一下 LaTex 语法,写公式挺有意思的。 整理之前三篇笔…

背景

闲来无事翻了一下之前买的一个机器学习课程及之前记录的网络笔记,发现遇到公式都是截图,甚至是在纸上用笔推导的。重新整理一遍之前逻辑回归函数的学习笔记,主要是为了玩一下 LaTex 语法,写公式挺有意思的。

整理之前三篇笔记汇总如下:

  1. 逻辑回归(上):函数求导过程自推 LaTex 语法
  2. 逻辑回归(中):数学公式学习笔记 LaTeX 版
  3. 逻辑回归(下): Sigmoid 函数的发展历史

逻辑回归 S 曲线的发展历史

Sigmoid 这个S 形是怎么发展的呢?又怎么想到用它来做分类的呢?罗马不是一天建成的,Sigmoid 函数也不是一天形成的。逻辑回归的历史相当悠久,迄今大概已经有200年。它的前身,则在18世纪就已经出现了。

18世纪,随着工业革命的深入;世界经济、科技的发展;美洲的发现,以及随之而来的大移民和北美人口迅猛增长……各个学科对于统计学的工具性需求越来越强烈。到了19世纪,为了研究人口增长以及化学催化反应与时间的关系,人们发明了逻辑函数。

指数函数

这个大家都不陌生,这就是传说中增长最快的曲线,它的数学表达式为:
f ( x ) = a x f(x)=a^x f(x)=ax

最初,学者们将人口(或化合物)的数量与时间的函数定义为 W ( t ) W(t) W(t) t t t 代表时间变量, W ( t ) W(t) W(t) 代表总量,用指数函数表示为:
W ( t ) = a e b t ,其中 a , e , b 均为模型参数, t 为模型变量。 W(t)=ae^{bt},其中 a,e,b 均为模型参数,t 为模型变量。 W(t)=aebt,其中aeb均为模型参数,t为模型变量。

该函数在坐标系中的表现为:
在这里插入图片描述

用该模型为一个国家的人口进行建模,已经被证明在一个国家新建早期人口增长状况是复合该模型的。马尔克斯的人口论中讲述的「在没有任何外界阻碍的情况下,人口将以几何级增长」正是基于指数模型。

我还想到了各种投资理论提倡的复利、非线性增长等,也是基于这个模型。

对该函数求微分,就可以得到增长率函数:
W ′ ( t ) = d W ( t ) d t W^{'}(t)=\frac{dW(t)}{dt} W(t)=dtdW(t)

修正指数函数

19世纪早期,开始有数学家、统计学家质疑上述模型:任何事物,如果真的按照几何级数任意增长下去,都会达到不可思议的数量。

然而,在自然界中,并没有什么东西是在毫无休止地增长的。当一种事物数量越来越多以后,某种阻力也会越来越明显地抑制其增长。

比利时数学家 Verhulst 给出了一个新的模型:

W ′ ( t ) = b W ( t ) − g ( W ( t ) ) W'(t)=bW(t)-g(W(t)) W(t)=bW(t)g(W(t))

其中, g ( W ( t ) ) g(W(t)) g(W(t))是以 W ( t ) W(t) W(t)为自变量的函数,它代表随着总数增长出现的阻力。

Verhulst 尝试了几种不同的阻力函数后,发现 g(W(t)) 是 W(t) 的平方形式时,新模型显示了它的逻辑性。对人口增长率公式修正,取 g ( ( W ( t ) ) = b ( W ( t ) ) 2 L g((W(t))=\frac{b(W(t))^2}{L} g((W(t))=Lb(W(t))2,其中 L 为 W(t) 的上限,增长率函数为:

W ′ ( t ) = b W ( t ) − b ( W ( t ) ) 2 L = b W ( t ) ( 1 − W ( t ) L ) \begin{align} W^{'}(t)&=bW(t)-\frac{b(W(t))^2}{L}\newline &=bW(t)(1-\frac{W(t)}{L})\newline \end{align} W(t)=bW(t)Lb(W(t))2=bW(t)(1LW(t))

这个公式将增长率表现为总量 W(t)、极限值L、总量和极限值之间的差比之间的关系。

P ( t ) = W ( t ) L P(t)=\frac{W(t)}{L} P(t)=LW(t),使用商的求导公式 u = W ( t ) , v = L u=W(t),v=L u=W(t),v=L 计算该函数的微分:
P ′ ( t ) = W ′ ( t ) ∗ L + 0 ∗ L L 2 = W ′ ( t ) L 2 = W ′ ( t ) L \begin{align} P^{'}(t)&=\frac{W^{'}(t)*L+0*L}{L^2}\newline&=\frac{W^{'}(t)}{L^2}\newline &=\frac{W^{'}(t)}{L} \end{align} P(t)=L2W(t)L+0L=L2W(t)=LW(t)

将公式 (2)代入公式(5)中,可以得到:
P ′ ( t ) = W ′ ( t ) L = b W ( t ) L ( 1 − W ( t ) L ) = b P ( t ) ( 1 − P ( t ) ) \begin{align} P^{'}(t)&=\frac{W^{'}(t)}{L} \newline&=\frac{bW(t)}{L}(1-\frac{W(t)}{L}) \newline&= bP(t)(1-P(t)) \end{align} P(t)=LW(t)=LbW(t)(1LW(t))=bP(t)(1P(t))

P ′ ( t ) = b P ( t ) ( 1 − P ( t ) ) P'(t)=bP(t)(1-P(t)) P(t)=bP(t)(1P(t)),这是一个一阶自治微分方程,导数是自身的函数,结合前面 逻辑回归(上):函数求导过程自推 LaTex 语法 的推导结果,可知,这里 P(t) 就是逻辑回归函数:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1

模型含义

意义:当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。该物种在此生态系统中有天敌、食物、空间等资源也不足(非理想环境),则增长函数满足逻辑斯谛方程,图像呈S形,此方程是描述在资源有限的条件下种群增长规律的一个最佳数学模型。

http://www.dinnco.com/news/60989.html

相关文章:

  • 做美女网站赚钱么永久免费的网站服务器有哪些软件
  • 我要建立自己的网站市场营销师报名官网
  • 毕业设计是做网站设计免费数据查询网站
  • 品牌策划公司网站百度ai人工智能平台
  • 自由做图网站山西网络营销seo
  • 桥西企业做网站百度seo霸屏软件
  • 厦门网站建设模板开网店哪个平台靠谱
  • 电商网站备案网络安全培训
  • 群站wordpress在百度怎么免费发布广告
  • 淘宝了做网站卖什么好2023年最新新闻摘抄
  • 工信部网站备案管理系统湖南省最新疫情
  • 广州短视频内容营销平台seo营销论文
  • 淘宝客网站推广位怎么做广告关键词
  • 咨询服务类网站建设域名注册信息
  • 西安网站建设ruiqinet网络营销的概念及内容
  • 拉萨做网站公司青岛百度seo排名
  • 网站制作报价单模板百度seo排名工具
  • 做电影网站只放链接算侵权吗旺道seo推广系统怎么收费
  • 10g空间网站做视频网站网页推广链接怎么做
  • 长春企业网站建设快速排名优化推广价格
  • 优设网免费素材安徽seo优化
  • 开发公司资质办理要求长沙seo就选智优营家
  • wordpress对接码支付教程便宜的seo网络营销推广
  • 男男做的视频网站网站推广互联网推广
  • wordpress 防注入广告高明搜索seo
  • 北京顺义区住房和城乡建设委员会网站软文推广例子
  • 成品网站源码多少钱高级搜索引擎
  • 企业网站建设内容 程序开发小程序定制
  • 宁波城乡住房建设局网站搭建网站步骤
  • 网站介绍词seo引擎优化怎么做