当前位置: 首页 > news >正文

专业网站建设网站开发公司广州网站优化方式

专业网站建设网站开发公司,广州网站优化方式,创建一个餐饮公司的模板,南宁关键词网站排名有如下几种计算相似性方法: 点积相似度 X ⋅ Y ∣ X ∣ ∣ Y ∣ c o s θ ∑ i 1 n x i ∗ y i \begin{aligned} X \cdot Y & |X||Y|cos\theta \\ & \sum_{i1}^n x_i * y_i \end{aligned} X⋅Y​∣X∣∣Y∣cosθi1∑n​xi​∗yi​​ 向量内积的结果是没…

有如下几种计算相似性方法:

点积相似度

X ⋅ Y = ∣ X ∣ ∣ Y ∣ c o s θ = ∑ i = 1 n x i ∗ y i \begin{aligned} X \cdot Y &= |X||Y|cos\theta \\ &= \sum_{i=1}^n x_i * y_i \end{aligned} XY=X∣∣Ycosθ=i=1nxiyi

向量内积的结果是没有界限的,解决办法就是先归一化再相乘,就是下面的余弦相似度了。

余弦相似度

X ⋅ Y = ∑ i = 1 n x i ∗ y i ∑ i = 1 n ( x i ) 2 ∗ ∑ i = 1 n ( x i ) 2 X \cdot Y = \frac{\sum_{i=1}^n x_i * y_i}{\sqrt{\sum_{i=1}^n (x_i)^2} * {\sum_{i=1}^n (x_i)^2}} XY=i=1n(xi)2 i=1n(xi)2i=1nxiyi

余弦相似度衡量两个向量在方向上的相似性,并不关注两个向量的实际长度,即对绝对数据不敏感。

示例

用户对内容评分,5分制。A和B两个用户对两个商品的评分分别为A:(1,2)和B:(4,5)。使用余弦相似度得出的结果是0.98,看起来两者极为相似,但从评分上看A不喜欢这两个东西,而B比较喜欢。造成这个现象的原因就在于,余弦相似度没法衡量每个维数值的差异,对数值的不敏感导致了结果的误差。
需要修正这种不合理性,就出现了调整余弦相似度,即所有维度上的数值都减去一个均值。
比如A和B对两部电影评分的均值分别是(1+4)/2=2.5,(2+5)/2=3.5。那么调整后为A和B的评分分别是:(-1.5,-1.5)和(1.5,2.5),再用余弦相似度计算,得到-0.98,相似度为负值,显然更加符合现实。

注:为什么是在所有用户对同一物品的打分上求均值,每个人打分标准不一,对所有用户求均值,等于是所有用户的打分映射到了同一空间内。上述是在计算两个用户的相似度,以此类推计算两个物品的相似度,就要计算所有物品的均值了。

修正的余弦相似度可以说就是对余弦相似度进行归一化处理的算法,公式如下:
s ( A , B ) = ∑ i ∈ I ( R A , i − R i ˉ ) ( R B , i − R i ˉ ) ∑ i ∈ I ( R A , i − R i ˉ ) 2 ∑ i ∈ I ( R B , i − R i ˉ ) 2 s(A, B)=\frac{\sum_{i \in I}\left(R_{A, i}-\bar{R_i}\right)\left(R_{B, i}-\bar{R_i}\right)}{\sqrt{\sum_{i \in I}\left(R_{A, i}-\bar{R_i}\right)^2} \sqrt{\sum_{i \in I}\left(R_{B, i}-\bar{R_i}\right)^2}} s(A,B)=iI(RA,iRiˉ)2 iI(RB,iRiˉ)2 iI(RA,iRiˉ)(RB,iRiˉ)
R A , i R_{A,i} RA,i 表示用户A在商品i上的打分, R i ˉ \bar{R_i} Riˉ表示商品i在所有用户上的打分均值。

皮尔逊相关系数

Pearson 相关系数是用来检测两个连续型变量之间线性相关的程度,它解决了余弦相似度会收到向量平移影响的问题。取值范围为 [−1,1],正值表示正相关,负值表示负相关,绝对值越大表示线性相关程度越高:
ρ x , y = cov ⁡ ( x , y ) σ x σ y = E [ ( x − μ x , y − μ y ) ] σ x σ y = ∑ i ( x i − x ˉ ) ( y i − y ˉ ) ∑ i ( x i − x ˉ ) 2 ∑ i ( y i − y ˉ ) 2 \begin{aligned} \rho_{\boldsymbol{x}, \boldsymbol{y}} &= \frac{\operatorname{cov}(\boldsymbol{x}, \boldsymbol{y})}{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}} \\ &= \frac{E\left[\left(\boldsymbol{x}-\mu_{\boldsymbol{x}}, \boldsymbol{y}-\mu_{\boldsymbol{y}}\right)\right]}{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}} \\ &= \frac{\sum_i\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sqrt{\sum_i\left(x_i-\bar{x}\right)^2} \sqrt{\sum_i\left(y_i-\bar{y}\right)^2}} \end{aligned} ρx,y=σxσycov(x,y)=σxσyE[(xμx,yμy)]=i(xixˉ)2 i(yiyˉ)2 i(xixˉ)(yiyˉ)
如果把 x ′ = x − x ˉ , y ′ = y − y ˉ x'=x-\bar{x}, y'=y-\bar{y} x=xxˉ,y=yyˉ ,那么皮尔逊系数计算的就是 x ′ 和 y ′ x' 和 y' xy 的余弦相似度。


参考

  • 点积相似度、余弦相似度、欧几里得相似度
  • 常用的特征选择方法之 Pearson 相关系数
  • 图片向量相似检索服务(2)——四种基本距离计算原理
    • 这篇博客倒是很简洁,适合速读
  • 点积相似度、余弦相似度、欧几里得相似度
  • 相似性和距离度量 (Similarity & Distance Measurement)
http://www.dinnco.com/news/65336.html

相关文章:

  • 廊坊哪里有做网站建设的推广软件哪个好
  • 优秀网站设计推荐站长查询域名
  • 河北网站建设36优化大师下载安装
  • java 企业门户网站网站关键词排名外包
  • 海宁做网站的公司安卓手机性能优化软件
  • 网站制作的英文推广策略都有哪些
  • 大连网络推广公司推荐排名优化关键词公司
  • app开发需要什么资源和团队seo顾问赚钱吗
  • wordpress plugin开发seo sem
  • 亚马逊网站中国十大教育培训机构有哪些
  • 淄博安监局网站两体系建设企业网站建设原则是
  • 创意响应式网站建设百度搜索高级搜索
  • 网站目前如何做外链设计一个简单的网页
  • 上海自贸区注册公司条件seo外链怎么做
  • 展示型网站多少钱河南网站建设公司哪家好
  • 长沙人力资源招聘网北京seo排名收费
  • 做公司网站的步骤数据分析师培训机构
  • 微网站建设今日军事头条
  • 宣传网站建设的意义精准营销理论
  • 网站开发工程师考试网络营销策划案例
  • 做网站首先要干什么百度关键词排名提升工具
  • go语做网站长沙seo优化推广公司
  • 武汉网站建设平台深圳整合营销
  • 空间站对接网站建设的六个步骤
  • 企业网站排名靠前如何让产品吸引顾客
  • 做网站不切片可以吗直通车关键词优化口诀
  • 养殖网站模版营销策划推广公司
  • 嘉兴营销型网站建设seo的培训课程
  • 四川住房城乡和城乡建设厅网站首页如何开通自己的网站
  • 网站建设 域名 数据库小程序平台