当前位置: 首页 > news >正文

免费自己建网站运营推广

免费自己建网站,运营推广,专业网页设计服务,风铃微网站怎么做这一类题型中二维数组的元素取值有序变化,因此可以用二分查找法。我们一起来看一下。 一、Leetcode 74 Leetcode 74. 搜索二维矩阵 这道题要在一个二维矩阵中查找元素。该二维矩阵有如下特点: 每行元素 从左到右 按非递减顺序排列。每行的第一个元素 …

这一类题型中二维数组的元素取值有序变化,因此可以用二分查找法。我们一起来看一下。

一、Leetcode 74

Leetcode 74. 搜索二维矩阵 这道题要在一个二维矩阵中查找元素。该二维矩阵有如下特点:

  • 每行元素 从左到右 按非递减顺序排列。
  • 每行的第一个元素 > 前一行的最后一个元素。

也就是说,这种二维数组的元素逐行、逐列递增变化,如下图所示,沿箭头方向元素值递增:

在这里插入图片描述

方法一:做两次二分查找。
  • 先在第一列中查找值为 target 的元素所在行。
  • 再在这一行中查找值为 target 的元素所在列。

在这两步中,难点在于第一步确定 target 所在行。以图中的示例矩阵为例,要寻找 3,如何定位到 3 所在行呢?在第一列的元素中,3 所在行的第一列元素 1 是小于 3 的元素中最接近 3 的元素,这就是第一步的思路:在第一列元素中查找小于等于 target、且最接近 target 的元素。这里可以用 Leetcode 69 所使用的方法(欢迎阅读文章:二分查找法搜寻元素 Leetcode35, Leetcode69,其中详细介绍了这类问题的两种解决方法,本文采用了其中一种方法。)

相应的 Python 代码和注释为:

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:# 第一步:查找元素所在行low, high = 0, len(matrix) - 1while low <= high:mid = low + (high - low) // 2# 注意:这里是在第 1 列查找,# mid元素索引为 matrix[mid][0]。if matrix[mid][0] == target:return Trueelif matrix[mid][0] > target:high = mid - 1else:low = mid + 1# 确定元素所在行(row)row = high# 第二步:查找元素所在列low, high = 0, len(matrix[0]) - 1while low <= high:mid = low + (high - low) // 2# 注意:这里是在第 row 行查找,# mid元素索引为 matrix[row][mid]。if matrix[row][mid] == target:return Trueelif matrix[row][mid] > target:high = mid - 1else:low = mid + 1return False         
方法二:把二维矩阵看作一个一维数组处理。

因为矩阵的元素是按升序排列,我们在处理时可以把它想象成连续的一维序列,就像上图示例矩阵中的元素,在脑子里把它“拼接”成一个连续的一维数组,[1,3,5,7,10,11,16,20,23,30,34,60],在这个升序数组里查找元素很容易。

但是,这个一维数组索引只是我们为了解决问题做的设想,实际中矩阵元素是以二维数组形式存储的,因此每次索引元素值时还需要一个操作:把(设想的)一维数组索引换算回(实际的)二维数组索引。

相应的 Python 代码和注释为:

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:# 求 mxn 矩阵的维度大小m = len(matrix)n = len(matrix[0])# 按“一维”有序数组处理length = m*nlow, high = 0, length - 1while low <= high:mid = low + (high - low) // 2# 关键:索引时要把(设想的)一维数组索引换算回(实际的)二维数组索引。mid_row = mid // nmid_col = mid % nmid_val = matrix[mid_row][mid_col] if mid_val == target:return Trueelif mid_val > target:high = mid - 1else:low = mid + 1return False           

方法二实现起来比方法一更简洁,但是我在 Leetcode 运行代码时发现方法二比方法一的耗时大。

二、Leetcode 240

Leetcode 240. 搜索二维矩阵 II 这道题也是在二维矩阵中查找元素。不同的是,这里的二维矩阵有如下特点:

  • 每行的元素 从左到右 升序排列。
  • 每列的元素 从上到下 升序排列。

下图所示为一个示例矩阵:

在这里插入图片描述

这道题的巧妙之处在于中点 mid 的选择

根据给定矩阵的升序排列特点,一个元素位于第 i 行、第 j 列,则该元素所在行第 0 ~ ( j - 1 ) 列的元素都比它小;该元素所在列第 ( i + 1 ) ~ ( m - 1 ) 行的元素都比它大。具体来说,以上图的示例矩阵为例,如绿色箭头标识所示,以圆圈中的元素 8 为中点,[ 2, 5, 8, 9, 14, 23 ] 这些元素就构成了一个升序排列的数组。也就是说,以第 i 行、第 j 列的元素为直角,其所在行和列元素构成的 倒 “L” 形状序列 是一个有序数组,而在直角的这个元素就是数组的中点。在这个数组中可以用二分查找:比较中点的元素与目标值 target 的大小决定下一步的寻找范围。如果该元素大于 target,就往左移一列:j - 1。如果该元素小于 target,就往下移一行:i + 1。

应该从哪里开始呢?选择右上角的元素(第 0 行,(n-1) 列)做为起始 mid 元素,逐步推进到左下角元素。时间复杂度是 O(m+n)。这一点您可以试一下,如果要找的元素位于左下角,正好要走 m+ n 步。

相应的 Python 代码为:

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:m, n = len(matrix), len(matrix[0])i, j = 0, n - 1while i < m and j >= 0:if matrix[i][j] == target:return Trueelif matrix[i][j] > target:j -= 1else:i += 1return False             

本文对您有帮助的话,请点赞支持一下吧,谢谢!

关注我 宁萌Julie,互相学习,多多交流呀!

参考

1.Leetcode 74 方法二思路:Don’t treat it as a 2D matrix, just treat it as a sorted list - Search a 2D Matrix - LeetCode

2.Leetcode 240 思路:My concise O(m+n) Java solution - Search a 2D Matrix II - LeetCode

http://www.dinnco.com/news/68814.html

相关文章:

  • 威海做网站哪家好深圳营销型网站开发
  • 重庆外贸网站建设公司软件推广接单平台
  • 如何建设一个博客网站全自动引流推广软件下载
  • 定做网站建设深圳网络推广有几种方法
  • 做网站好的网站建设公司seo站外推广有哪些
  • 外贸建站应该怎么做百度网盘下载的文件在哪
  • 企业官网模板下载百度seo综合查询
  • 泰安网站建设案例市场营销案例分析
  • 南京网页网站制作免费发布推广信息的软件
  • 今科网站建设公司凡科建站官网
  • 网站的开发方法广州网站建设正规公司
  • 色块网站网络推广运营推广
  • 自己网站上做支付宝怎么收费的站长基地
  • 网站开发需要多钱微信营销神器
  • 做网站开发的电话销售话术简述网站推广的意义和方法
  • 网站推广平台怎么做百度账户登录
  • 专做网站seo网站关键词排名提升
  • 自己做报名网站线上渠道推广怎么做
  • 北京做兼职的网站百度竞价有点击无转化
  • 今日发生的重大国际新闻长沙建站seo公司
  • 手机兼职赚钱平台学生党seo营销服务
  • 网站是什么公司做的百度识图网页版
  • 网站样式模板站长之家排行榜
  • 低价网站设计多少钱推广方案应该有哪些方面
  • 自己做网站卖东西怎么做网络销售
  • 教你做吃的网站营销网页设计公司
  • 肇庆网站建设公司宁波seo排名公司
  • 济南微信网站建设磁力蜘蛛
  • dede网站打开慢中层管理者培训课程有哪些
  • 沈阳市城乡建设局网站互联网营销师培训内容