当前位置: 首页 > news >正文

wordpress 4 按钮 不显示seo需要什么技术

wordpress 4 按钮 不显示,seo需要什么技术,网页模板psd,设计理念页面设计回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。 那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。 接下来,和大家分享如何评估 回归模型 的性能和准…

      回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。

那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。

接下来,和大家分享如何评估 回归模型 的性能和准确度。

一、 评估指标

1.1 均方误差(MSE)

      均方误差(Mean Squared Error, MSE衡量的是预测值与真实值之间的平均平方差异。MSE越小,模型的预测精度越高。由于平方误差将偏差放大,因此MSE对异常值(Outliers)比较敏感。

MSE=\frac{1}{n}\sum_{i=1}^{n}\left ( y_{i}-\hat{y}_{i} \right )^{2}

  •  y_{i} 是第  i 个样本的真实值。\hat{y}_{i} 是第  i 个样本的预测值。n 是样本总数。

from sklearn.metrics import mean_squared_error# y_true 是真实值数组,y_pred 是预测值数组
mse = mean_squared_error(y_true, y_pred)
print("Mean Squared Error (MSE):", mse)

1.2 均方根误差(RMSE)

        均方根误差(Root Mean Squared Error, RMSE是MSE的平方根,具有与原数据相同的量纲(单位),因此更容易解释。它同样对异常值敏感。 

RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left ( y_{i}-\hat{y}_{i} \right )^{2}}

import numpy as nprmse = np.sqrt(mean_squared_error(y_true, y_pred))
print("Root Mean Squared Error (RMSE):", rmse)

1.3 平均绝对误差(MAE)

       平均绝对误差(Mean Absolute Error, MAE衡量的是预测值与真实值之间的平均绝对差异。相比MSE和RMSE,MAE对异常值不那么敏感。

 MAE=\frac{1}{n}\sum_{i=1}^{n} \left | y_{i}-\hat{y}_{i} \right |

from sklearn.metrics import mean_absolute_errormae = mean_absolute_error(y_true, y_pred)
print("Mean Absolute Error (MAE):", mae)

1.4. 决定系数(R²)

       决定系数衡量的是模型解释数据变异的比例。其取值范围在0到1之间,值越接近1,模型解释能力越强。如果R²为0,表示模型没有解释任何数据变异;如果R²为1,表示模型完美地解释了数据变异。 

 R^{2}=\frac{\sum_{i=1}^{n}\left ( y_{i}-\hat{y}_{i} \right )^{2}}{\sum_{i=1}^{n}\left ( y_{i}-\bar{y}_{i} \right )^{2}}

  • \bar{y}_{i}是真实值的平均值。

from sklearn.metrics import r2_scorer2 = r2_score(y_true, y_pred)
print("R² (Coefficient of Determination):", r2)

二、 评估图

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(1000, 1)
y = 4 + 3 * X + np.random.randn(1000, 1)# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

2.1  真实值与预测值的散点图

我们可以通过散点图比较真实值与预测值,直观展示模型的预测效果。 

plt.scatter(X_test, y_test, color='black', label='Actual Values')
plt.scatter(X_test, y_test_pred, color='blue', label='Predicted Values')
plt.plot(X_test, y_test_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Actual vs Predicted Values')
plt.legend()
plt.show()

2.2  预测误差的分布图 

 预测误差(真实值与预测值的差异)的分布图可以帮助我们了解模型误差的分布情况。

errors = y_test - y_test_predplt.hist(errors, bins=20, edgecolor='black')
plt.xlabel('Prediction Error')
plt.ylabel('Frequency')
plt.title('Distribution of Prediction Errors')
plt.show()

2.3  学习曲线 

       习曲线展示了训练误差和验证误差随训练集大小的变化情况,有助于我们诊断模型是否存在欠拟合或过拟合问题。 

from sklearn.model_selection import learning_curvetrain_sizes, train_scores, test_scores = learning_curve(model, X, y, cv=5, scoring='neg_mean_squared_error')train_scores_mean = -train_scores.mean(axis=1)
test_scores_mean = -test_scores.mean(axis=1)plt.plot(train_sizes, train_scores_mean, label='Training error')
plt.plot(train_sizes, test_scores_mean, label='Validation error')
plt.ylabel('MSE')
plt.xlabel('Training set size')
plt.title('Learning Curves')
plt.legend()
plt.show()

       以上是详细介绍如何评估 回归模型 的性能和准确度,包括各个评估指标的原理、公式推导以及在Python中的实现。

参考:

机器学习模型评估的方法总结(回归、分类模型的评估)_分类模型评估方法-CSDN博客

模型评估指标总结(预测指标、分类指标、回归指标)_常见模型误差评价指标-CSDN博客

机器学习笔记:回归模型评估指标——MAE、MSE、RMSE、MAPE、R2等 - Hider1214 - 博客园

持续更新中。。。  

http://www.dinnco.com/news/6999.html

相关文章:

  • 淮南建设工程信息网站软文推广代写代发
  • 武汉网上推广的网站简述网站推广的方法
  • 营销型网站建设流程怎样在百度上发布作品
  • 企业做网站做什么科目软文街官方网站
  • 百度收录网站与手机版苏州优化网站公司
  • jeecms 怎么建设网站全国疫情最新情况最新消息今天
  • 站长要维护网站百度推广客户端电脑版
  • 在网站做专题产品线上营销推广方案
  • 网站做系统叫什么营销网络建设
  • 时时彩五星做号网站企业建站流程
  • 网站招聘顾问做啥的深圳外贸seo
  • 哈尔滨网站开发建设公司外链购买平台
  • 做招聘海报的网站网上怎么推广产品
  • 如何做网站 frontpage什么是seo营销
  • 广州优化网站关键词酒店机票搜索量暴涨
  • 做外汇上什么网站看新闻企业推广方式有哪些
  • 哪些网站是react做的百度如何推广网站
  • 两耳清风怎么做网站工具大全
  • dz网站建设器上海网站制作推广
  • 学校门户网站流程建设方案郑州互联网公司排名
  • 做网站 技术百度指数免费查询入口
  • 如何创建自己的公司昆山优化外包
  • 郓城建设局网站seo推广的特点
  • java可以做网站前台吗互联网关键词优化
  • 帝国cms 网站地图标签seo优化推广工程师
  • jsp企业网站开发毕业论文网络最有效的推广方法
  • 做进化树的在线网站网络推广公司深圳
  • 新闻列表做的最好的网站上海网络seo
  • 2021年网站有人分享吗平台如何做推广
  • 《高性能网站建设指南seo分析seo诊断