当前位置: 首页 > news >正文

成都网站制作推来客网站系统seo综合排名优化

成都网站制作推来客网站系统,seo综合排名优化,那个网站是专门做渔具的,大连手机自适应网站建设报价文章目录 前言一、堆排代码一、计算使用向上调整法建堆的时间复杂度二、计算使用向下调整法插入的时间复杂度总结 前言 在博主的上一篇博客堆排(链接在这里点击即可)的总结中提出啦使用向下调整法建堆比使用向上调整法建堆更好,是因为使用向上调整法建堆的时间复杂…

文章目录

  • 前言
  • 一、堆排代码
  • 一、计算使用==向上调整法==建堆的时间复杂度
  • 二、计算使用==向下调整法==插入的时间复杂度
  • 总结


前言

在博主的上一篇博客堆排(链接在这里点击即可)的总结中提出啦使用向下调整法建堆比使用向上调整法建堆更好,是因为使用向上调整法建堆的时间复杂度为O(n*logn),使用向下调整法建堆的时间复杂度为O(n)。接下来博主就教大家如何计算它们的时间复杂度。


一、堆排代码

void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}
//向上调整法
void AdjustUp(HPDataType* arr, int child)
{int parent = (child - 1) / 2;while (child > 0)//不需要等于,child只要走到根节点的位置,根节点没有父节点不需要交换{if (arr[child] < arr[parent])//若孩子结点比父结点小则交换{Swap(&arr[parent], &arr[child]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//向下调整法
void AdjustDown(HPDataType* arr, int parent, int n)
{int child = parent * 2 + 1;//左孩子while (child < n){//找左右孩子中找最小的if (child + 1 < n && arr[child] > arr[child + 1]){child++;}if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
//堆排
void HeapSort(int* arr, int n)
{//向上调整法建堆for (int i = 0; i < n; i++){AdjustUp(arr, i);}//向下调整算法建堆//for (int i = (n-1-1)/2; i >= 0; i--)//{//	AdjustDown(arr, i , n);//}//循环将堆顶数据跟最后位置的数据进行交换int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, 0, end);end--;}
}

一、计算使用向上调整法建堆的时间复杂度

for (int i = 0; i < n; i++)
{AdjustUp(arr, i);
}
  • 第1层,20个结点,最多需要向上移动0次。
  • 第2层,21个结点,最多需要向下移动1次。
  • 第3层,22个结点,最多需要向上移动2次。
  • 第h-1层,2h-2个结点,最多需要向上移动h-2次。
  • 第h层,2h-1个结点,最多需要向上移动h-1次。
    所以最多移动的次数总和为:
    (1) T(h) = 20(0)+21(1)+22(2)+…+2h-2(h-2)+2h-1(h-1)
    (2) 2T(h) = 21(0)+22(1)+23(2)+…+2h-1(h-2)+2h(h-1)
    (2)-(1) 得
    T(h) = -(21+22+23+…+2h-2+2h-1+2h-1)+2hh
    使用高中阶段学过的等比数列求和公式:S = a1
    (1-qn)/1-q可得
    T(h) = 2(1-2h)+2hh = 2+2h(h-2)
    再根据二叉树的性质:n = 2h-1,h = log2(n+1)可得
    T(n) = 2 + (n+1)(log2(n+1)-2) = (n+1)log2(n+1)-2
    n
    所以向上调整法建堆的时间复杂度为O(logn*n)

二、计算使用向下调整法插入的时间复杂度

for (int i = (n-1-1)/2; i >= 0; i--)
{AdjustDown(arr, i , n);
}
  • 第1层,20个结点,最多需要向下移动h-1次。
  • 第2层,21个结点,最多需要向下移动h-2次。
  • 第3层,22个结点,最多需要向下移动h-3次。
  • 第h-1层,2h-2个结点,最多需要向下移动1次。
  • 第h层,2h-1个结点,最多需要向下移动0次。

所以最多移动的次数总和为:
(1) T(h) = 20(h-1)+21(h-2)+22(h-3)+…+2h-2(1)
(2) 2T(h) = 21(h-1)+22(h-2)+23(h-3)+…+2h-1(1)
(2)-(1) 得
T(h) = 21+22+23+…+2h-2+2h-1-20(h-1)
T(h) =20+ 21+22+23+…+2h-2+2h-1-h
使用高中阶段学过的等比数列求和公式:S = a1
(1-qn)/1-q可得
T(h) = 2h-1-h
再根据满二叉树的性质:n = 2h-1,h = log2(n+1)可得
T(n) = n-log2(n+1)
*
所以向下调整法建堆的时间复杂度为O(n)


总结

通过这篇博客相信柚柚们已经清楚向下调整法建堆和向上调整法建堆的时间复杂度怎么计算啦,后期博主还会更新有关数据结构的博客,感兴趣的柚柚们可以关注博主喔~

http://www.dinnco.com/news/74288.html

相关文章:

  • 中企网站建设东莞头条最新新闻
  • 哪个网站可以免费做简历百度广告怎么收费
  • 查询网站备案密码是什么样的开鲁seo网站
  • 武汉做网站的推特是谁的公司
  • 站长之家ping检测可口可乐网络营销策划方案
  • 定制网站建设创意培训公司
  • html网页设计基础网站seo诊断报告怎么写
  • 做佛教网站的人从中谋利吗免费广告推广
  • 网络服务器怎么连接厦门seo代理商
  • 专门做电路图的网站网络营销企业案例分析
  • 江苏通信建设交易中心网站网店营销
  • 如何做闲置物品自己的网站如何做好搜索引擎优化工作
  • 天津企业建站程序网页设计软件有哪些
  • 展示型网站怎么做东莞做网页建站公司
  • 企业网站模板 cssseo免费工具
  • 卓越 网站建设 深圳西乡校园推广
  • 常州做网站一般多少钱今日头条官方正版
  • 现在ps做网站的尺寸凡科网
  • 手机网站范例seo关键词优化公司哪家好
  • 东莞做网站seo优化北京seo关键词排名优化
  • asp网站经常 响应北京seo推广
  • 做网站需要学php哪些技术google谷歌搜索主页
  • 自己的网站怎么做app中国新冠疫苗接种率
  • 如何上传ftp网站程序搜索网排名
  • qq怎么做网站在线聊天北京全网营销推广公司
  • 网站做移动端怎么在百度上投放广告
  • 建网站怎么起名字网站百度收录
  • 企业服务工作站网络营销和传统营销的区别
  • 网站seo文章该怎么写成都seo推广
  • 网站建设卖东西百度seo公司哪家强一点