当前位置: 首页 > news >正文

手机h5网站模板下载比较开放的浏览器

手机h5网站模板下载,比较开放的浏览器,品牌宣传网站制作,app开发需要哪些知识排序算法 归并排序算法思路代码时间复杂度 堆排序什么是堆?如何维护堆?如何建堆?堆排序时间复杂度 快速排序算法思想代码时间复杂度 归并排序 算法思路 归并排序算法有两个基本的操作,一个是分,也就是把原数组划分成…

排序算法

  • 归并排序
    • 算法思路
    • 代码
    • 时间复杂度
  • 堆排序
    • 什么是堆?
    • 如何维护堆?
    • 如何建堆?
    • 堆排序
    • 时间复杂度
  • 快速排序
    • 算法思想
    • 代码
    • 时间复杂度

归并排序

算法思路

归并排序算法有两个基本的操作,一个是,也就是把原数组划分成两个子数组的过程。另一个是,它将两个有序数组合并成一个更大的有序数组。

将待排序的线性表不断地切分成若干个子表,直到每个子表只包含一个元素,这时,可以认为只包含一个元素的子表是有序表。
将子表两两合并,每合并一次,就会产生一个新的且更长的有序表,重复这一步骤,直到最后只剩下一个子表,这个子表就是排好序的线性表。
在这里插入图片描述

代码

// 归并排序
public int[] sortArray(int[] nums) {return mergeSort(nums, 0, nums.length - 1);
}private int[] mergeSort(int[] nums, int left, int right) {// 递归终止条件if (left >= right) {// 返回单个元素的数组return new int[]{nums[left]};}// 分治int mid = (left 0+ right) / 2;// 分别对左右子数组进行排序int[] leftArr = mergeSort(nums, left, mid);int[] rightArr = mergeSort(nums, mid + 1, right);int[] res = new int[leftArr.length + rightArr.length];// 合并两个有序数组int i = 0, j = 0, k = 0;while (i < leftArr.length && j < rightArr.length) {if (leftArr[i] <= rightArr[j]) {res[k++] = leftArr[i++];} else {res[k++] = rightArr[j++];}}while (i < leftArr.length) {res[k++] = leftArr[i++];}while (j < rightArr.length) {res[k++] = rightArr[j++];}return res;
}

时间复杂度

O(nlogn)

堆排序

什么是堆?

如下图(大根堆)(二叉)堆是一个数组,它可以被看成一个完全二叉树。
二叉树形式:
在这里插入图片描述
数组形式:
在这里插入图片描述
堆的根节点在数组中的下标为0,我们很容易得到左孩子为1,右孩子为2,第i个节点的左孩子为2i+1,右孩子为2i+2 。
二叉堆分为两种形式:大根堆和小根堆。大根堆性质,根节点的值大于所以子树节点的值。小根堆性质,根节点的值小于所以子树节点的值。

如何维护堆?

Java代码维护大根堆:

//维护大根堆
private void heapify(int n,int i) {//当前根节点int largest = i;//左孩子节点int lchild = 2*i+1;//右孩子节点int rchild = 2*i+2;//找三个元素最大的作为父节点if (lchild < n && nums[lchild] > nums[largest]) {largest = lchild;}if (rchild < n && nums[rchild] > nums[largest]) {largest = rchild;}//如果交换则维护交换后的if (largest != i) {swap(largest,i);heapify(n,largest);}
}

问题:为啥交换后,只需要维护交换后的子节点呢?
举一个例子:
在这里插入图片描述
根节点需要跟左孩子交换,交换后,根节点的右子树并未改变树结构,则只需要递归维护根节点左子树的堆性质。

如何建堆?

我们可以用自低向上的方法利用上面维护堆的算法heapify来建堆。子数组从n/2开始都是树的叶子节点。每个叶子节点可以被看成包含一个元素的堆。所以建堆的过程从n/2-1–>0 。

//1.建堆//从最后一个有孩子的节点开始 n/2-1for (int i = n/2-1; i >= 0; i--) {heapify(n,i);}

堆排序

前面我们利用建堆算法成功建立一个大根堆。因为数组最大元素总在根节点nums[0]中,通过把它与nums[n-1]交换,我们可以让该元素放到正确的位置。这时候,如果我们从堆中去掉节点n-1,剩余节点中根的孩子结点仍然是大根堆,而新的根节点可能违背大根堆性质。为了维护大根堆性质,需要不断调用 heapify 从而在nums 上构建一个新的大根堆。堆排序算法会不断重复这个过程,直到堆的大小从n-1降到1 。

给出完整的堆排序算法:

private int[] nums;// 待排序数组
//堆排序									
private void heap_sort(int n) {//1.建堆//从最后一个有孩子的节点开始 n/2-1for (int i = n/2-1; i >= 0; i--) {heapify(n,i);}//2.堆排序for (int i = n-1; i > 0; i--) {swap(i,0);//交换最后一个和根元素heapify(i,0);//交换后维护}
}
//维护大根堆
private void heapify(int n,int i) {int largest = i;int lchild = 2*i+1;int rchild = 2*i+2;//找三个元素最大的作为父节点if (lchild < n && nums[lchild] > nums[largest]) {largest = lchild;}if (rchild < n && nums[rchild] > nums[largest]) {largest = rchild;}//如果交换则维护交换后的if (largest != i) {swap(largest,i);heapify(n,largest);}
}private void swap(int i,int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;
}

时间复杂度

O(nlogn)

快速排序

算法思想

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:

1、首先设定一个基数,通过该基数将数组分成左右两部分。

2、将大于或等于基数的数据集中到数组右边,小于基数的数据集中到数组的左边。此时,左边部分中各元素都小于或等于基数,而右边部分中各元素都大于或等于基数。

3、然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个基数,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

4、重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

概括来说为 挖坑填数 + 分治法。
在这里插入图片描述

代码

代码中使用Random作为随机生成器生成基数,思想不变,只是基数选取的方式改变。

private int[] nums;
// 随机数生成器, 用于生成选择基数元素
private final Random random = new Random();public int[] sortArray(int[] nums) {this.nums = nums;quickSort(0, nums.length - 1);return nums;
}
public void quickSort(int left, int right) {// 递归终止条件if (left >= right) {return;}// 调用partition函数,对数组进行分区,并获取基准元素的最终位置int pivot = partition(left, right);// 递归调用,对左子数组进行快速排序quickSort(left, pivot - 1);// 递归调用,对右子数组进行快速排序quickSort(pivot + 1, right);
}
public int partition(int left, int right) {// 生成一个随机的基准元素位置int pivot = random.nextInt(right - left + 1) + left;// 保存基准元素的值int pivotVal = nums[pivot];// 将基准元素交换到数组的最后一个位置swap(pivot, right);// 定义两个指针,i指向数组的最左边,j指向数组的最右边int i = left, j = right;while (i < j) {// 从左向右找到第一个大于等于基准元素的位置while (i < j && nums[i] <= pivotVal) {i++;}// 从右向左找到第一个小于等于基准元素的位置while (i < j && nums[j] >= pivotVal) {j--;}// 如果i和j指向的位置不合法,则交换i和j指向的元素if (i < j) {swap(i, j);}}// 将基准元素交换到正确的位置swap(i, right);return i;
}public void swap(int i, int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;
}

时间复杂度

O(nlogn)

http://www.dinnco.com/news/76693.html

相关文章:

  • 域名解析网站登录教育培训机构管理系统
  • 国企网站建设汕头网站设计公司
  • 做网站有哪些行业他达拉非片多少钱一盒
  • 学做网站论坛怎么样郑州seo外包
  • 淄博外贸网站哪家好免费软文推广平台
  • 新乡网站建设2021年关键词有哪些
  • java做视频网站的需求网址网域ip地址查询
  • 网站建站建设上海黔文信息科技有限公司30怎么推广自己的产品
  • 网络开发工程师专业全网优化
  • 做交易网站需要多少钱厦门网站到首页排名
  • 宜兴宜兴建设局网站网络销售每天做什么
  • diy手机壳定制网站seo排名关键词
  • seo教学视频教程杭州关键词优化平台
  • 广东基层团组织建设部网站中国关键词
  • vs2012网站开发东莞seo搜索
  • 石家庄官网建设360优化大师下载官网
  • 案例展示网站护肤品推广软文
  • seo建站还有市场吗网站seo站长工具
  • 厦门模板网站建设建个网站需要多少钱
  • 电脑从做系统怎么找回以前登录的网站百度关键词优化的意思
  • 做黑网站吗百度seo推广首选帝搜软件
  • 灌南网页定制广州 关于进一步优化
  • wordpress制作网站模板优秀的网络搜索引擎营销案例
  • 重庆企业网站制作外包百度网站推广关键词怎么查
  • 兰州装修公司哪家口碑最好搜索引擎优化方法包括
  • 郑州网站建设批发今日时政新闻
  • 工作总结ppt模板免费下载 素材seo技术培训宁波
  • 北京网站改版公司江苏seo平台
  • 网站生成器下载nba最新交易信息
  • 访问自己做的网站吗优化教程网站推广排名