当前位置: 首页 > news >正文

中英文企业网站制作做一个网站

中英文企业网站制作,做一个网站,wordpress网站换主题,长春市建设技工学校网站文章目录 二叉搜索树二叉搜索树的基本实现原理 二叉搜索树的实现非递归版本的实现递归版本的实现 二叉搜索树 二叉搜索树也叫做二叉排序树,可以是空树,也可以是满足一些要求的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点…

文章目录

  • 二叉搜索树
    • 二叉搜索树的基本实现原理
  • 二叉搜索树的实现
    • 非递归版本的实现
    • 递归版本的实现

二叉搜索树

二叉搜索树也叫做二叉排序树,可以是空树,也可以是满足一些要求的二叉树

  1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  3. 它的左右子树也分别为二叉搜索树

对于一种数据结构来说,大概率是实现增删查改这四个基本功能,这里实现的是增删查,对于改不实现的原因后续解释:

二叉搜索树的基本实现原理

1. 二叉搜索树的查找
a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找
b、最多查找高度次,走到到空,还没找到,这个值不存在

2. 二叉搜索树的插入
插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给root指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

3. 二叉搜索树的删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:
a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点

对于这些情况,有下面的解决方案:
情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点–直接删除
情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点–直接删除
情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题–替换法删除

二叉搜索树的实现

二叉树中节点是最基本的信息,因此先进行节点的定义

template <class K>
struct Node
{Node(int key = 0):_left(nullptr), _right(nullptr), _key(key){}Node* _left;Node* _right;K _key;
};

非递归版本的实现

1. 插入

对于二叉搜索树来说,插入的逻辑是很简单的,如果插入的元素比目前的节点要大,就插入到右边,如果比目前的节点小,就插入到左边:

	bool Insert(const K& key){if (_root == nullptr){_root = new Node(key);}else{Node* cur = _root;Node* parent = cur;while (cur){parent = cur;if (key > cur->_key){cur = cur->_right;}else if (key < cur->_key){cur = cur->_left;}else{return false;}}if (parent->_key > key){parent->_left = new Node(key);}else{parent->_right = new Node(key);}}return true;}

2. 删除

二叉搜索树的删除较为复杂,下面分几种情况来进行讨论:

  1. 左根或右根为空

在这里插入图片描述
由于这种情况下最多只有一边有值,因此直接删除这个节点即可,令这个节点的父亲节点指向它的下一个节点

  1. 如果两边都有分支

解决的方法是,从要删除的这个节点的右子树中寻找一个可以替换它位置的数,这个数在寻找的时候选取的是右子树中的最小值,也就是右子树中的最左边的值就是所需要的值,交换后依旧可以满足二叉搜索树的条件,因此可以这样选择

	bool Erase(const K& key){Node* cur = _root;Node* parent = cur;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}else{if (cur->_left == nullptr){// 左为空if (cur == _root){_root = cur->_right;}else{if (key < parent->_key){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}}else if (cur->_right == nullptr){// 右为空if (cur == _root){_root = cur->_left;}else{if (key < parent->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}}else{// 左右都不为空parent = cur;Node* subleft = cur->_right;while (subleft->_left){parent = subleft;subleft = subleft->_left;}swap(cur->_key, subleft->_key);if (subleft == parent->_left){parent->_left = subleft->_right;}else{parent->_right = subleft->_right;}}return true;}}return false;}

3. 查找

有了前面的基础,查找的原理就很简单了,如果要找的值比当前值小,就到左树中寻找,如果要找的值比当前值大,就到右树中寻找,直到最后找到这个值为止,否则返回找不到

	bool Find(const K& key){Node* cur = _root;while (cur){if (key > cur->_key){cur = cur->_right;}else if (key < cur->_key){cur = cur->_left;}else{return true;}}return false;}

递归版本的实现

	bool InsertR(const K& key){return _Insert(_root, key);}bool EraseR(const K& key){return _Erase(_root, key);}bool FindR(const K& key){return _Find(_root, key);}void InOrder(){_InOrder(_root);cout << endl;}
private:bool _Insert(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (key > root->_key){_Insert(root->_right, key);}else if(key<root->_key){_Insert(root->_left, key);}return false;}bool _Erase(Node*& root, const K& key){if (root==nullptr){return false;}if (key < root->_key){_Erase(root->_left, key);}else if (key > root->_key){_Erase(root->_right, key);}else{if (root->_left == nullptr){Node* del = root;root = root->_right;delete del;return true;}else if (root->_right == nullptr){Node* del = root;root = root->_left;delete del;return true;}else{Node* subleft = root->_right;while (subleft->_left){subleft = subleft->_left;}swap(root->_key, subleft->_key);return _Erase(root->_right, key);}}}bool _Find(Node* root, const K& key){if (root == nullptr){return false;}if (key < root->_key){return _Find(root->_left, key);}else if (key > root->_key){return _Find(root->_right, key);}else{return true;}}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}

验证代码是否成功:

int main()
{int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };BSTree<int> bst;cout << "非递归版本:" << endl;for (auto e : a){bst.Insert(e);}bst.InOrder();for (auto e : a){bst.Erase(e);bst.InOrder();}cout << "递归版本:" << endl;for (auto e : a){bst.InsertR(e);}bst.InOrder();for (auto e : a){bst.EraseR(e);bst.InOrder();}return 0;
}

实验结果:

在这里插入图片描述
由此可知,这里的二叉搜索树的实现是没有问题的

完整代码:

#include <iostream>
using namespace std;template <class K>
struct Node
{Node(int key = 0):_left(nullptr), _right(nullptr), _key(key){}Node* _left;Node* _right;K _key;
};template <class K>
class BSTree
{typedef Node<K> Node;
public:bool Insert(const K& key){if (_root == nullptr){_root = new Node(key);}else{Node* cur = _root;Node* parent = cur;while (cur){parent = cur;if (key > cur->_key){cur = cur->_right;}else if (key < cur->_key){cur = cur->_left;}else{return false;}}if (parent->_key > key){parent->_left = new Node(key);}else{parent->_right = new Node(key);}}return true;}bool Erase(const K& key){Node* cur = _root;Node* parent = cur;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}else{if (cur->_left == nullptr){// 左为空if (cur == _root){_root = cur->_right;}else{if (key < parent->_key){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}}else if (cur->_right == nullptr){// 右为空if (cur == _root){_root = cur->_left;}else{if (key < parent->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}}else{// 左右都不为空parent = cur;Node* subleft = cur->_right;while (subleft->_left){parent = subleft;subleft = subleft->_left;}swap(cur->_key, subleft->_key);if (subleft == parent->_left){parent->_left = subleft->_right;}else{parent->_right = subleft->_right;}}return true;}}return false;}bool Find(const K& key){Node* cur = _root;while (cur){if (key > cur->_key){cur = cur->_right;}else if (key < cur->_key){cur = cur->_left;}else{return true;}}return false;}bool InsertR(const K& key){return _Insert(_root, key);}bool EraseR(const K& key){return _Erase(_root, key);}bool FindR(const K& key){return _Find(_root, key);}void InOrder(){_InOrder(_root);cout << endl;}
private:bool _Insert(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (key > root->_key){_Insert(root->_right, key);}else if(key<root->_key){_Insert(root->_left, key);}return false;}bool _Erase(Node*& root, const K& key){if (root==nullptr){return false;}if (key < root->_key){_Erase(root->_left, key);}else if (key > root->_key){_Erase(root->_right, key);}else{if (root->_left == nullptr){Node* del = root;root = root->_right;delete del;return true;}else if (root->_right == nullptr){Node* del = root;root = root->_left;delete del;return true;}else{Node* subleft = root->_right;while (subleft->_left){subleft = subleft->_left;}swap(root->_key, subleft->_key);return _Erase(root->_right, key);}}}bool _Find(Node* root, const K& key){if (root == nullptr){return false;}if (key < root->_key){return _Find(root->_left, key);}else if (key > root->_key){return _Find(root->_right, key);}else{return true;}}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}Node* _root = nullptr;
};
http://www.dinnco.com/news/78413.html

相关文章:

  • 重庆招聘58同城seo关键词排名查询
  • 湖北什么是网络营销seo去哪里学
  • 香港主机网站速度百度seo查询工具
  • 西安大网站建设公司排名网上网络推广
  • 做戒烟网站素材神马推广登录
  • 网站设计前景广州网络营销推广公司
  • 网站建设哪里有学色盲测试图动物
  • 专门给别人做网站站长素材网
  • 牡丹江定制软件开发武汉seo关键字推广
  • 可以做多边形背景的网站今日重大新闻头条
  • 17网站一起做网店广州国大长春网站seo哪家好
  • 如何增加网站的反链电商网站制作
  • 腾讯云服务器搭建网站线上推广怎么做
  • 一键生成ppt免费平板电视seo优化关键词
  • 哈尔滨快速网站排名百度搜索如何去广告
  • 模板网站建设重庆森林为什么叫这个名字
  • saas是不是做网站新网站百度收录
  • 建网站做站长营销网站大全
  • wordpress删除自定义栏目站长工具seo综合查询问题
  • 政府网站集约化建设 讲话济南优化网站的哪家好
  • 北京如何做网站seo短视频入口
  • 招聘网站如何做SEO发外链平台
  • 怎么给网站做搜索功能百度网盘在线观看资源
  • 网站开发找哪家好sem优化师是什么意思
  • 网站运营专员做六休一免费的企业黄页网站
  • 网站需求分析与设计方案武汉排名seo公司
  • 下列关于网站制作的考证培训机构
  • 网站设计开发报价seo综合优化公司
  • 资源网站不好找了seo关键词排名工具
  • 帮人做网站收多少钱西安网红