当前位置: 首页 > news >正文

竞价网站如何设计网站注册地址查询

竞价网站如何设计,网站注册地址查询,企业网站建设 ppt,梦幻西游网页版微信区和app互通吗注:本篇是基于唐老师的学习视频做的一些理论实践,需要提前知道一些线性代数的基础知识,原视频链接: 8.数学基础知识学习说明_哔哩哔哩_bilibili 前期准备: 知识点①: Unity中需要遵守的设定:…

注:本篇是基于唐老师的学习视频做的一些理论实践,需要提前知道一些线性代数的基础知识,原视频链接:

8.数学基础知识学习说明_哔哩哔哩_bilibili

前期准备:

知识点①:

        Unity中需要遵守的设定:

                1、我们约定变换顺序为:缩放->旋转->平移。

                2、我们约定旋转的顺序为:Z->X->Y。

知识点②:

        1、基础变换矩阵的构成规则:

        2、平移矩阵的定义:

                A=\begin{bmatrix} 1 & 0& 0 & tx \\ 0& 1& 0& ty\\ 0& 0& 1& tz\\ 0& 0&0 & 1 \end{bmatrix}       逆矩阵     A^{-1}=\begin{bmatrix} 1 & 0 & 0 & -tx \\ 0& 1 & 0& -ty\\ 0& 0& 1 & -tz\\ 0& 0& 0& 1 \end{bmatrix}

        3、旋转矩阵的定义:    

                       绕X轴旋转\beta度:                        绕Y轴旋转\beta度:                       绕Z轴旋转\beta度:

               \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}          \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}          \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}

                因为旋转矩阵是正交矩阵,所以它的逆矩阵就是它的转置矩阵。

                即:假设有旋转矩阵A,那么 A^{-1}=A^{T}

        4、缩放矩阵的定义:

                A=\begin{bmatrix} kx & 0 & 0 & 0\\ 0 & ky & 0 & 0\\ 0 & 0 & kz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}    逆矩阵   A^{-1}=\begin{bmatrix} 1/kx & 0 & 0 & 0\\ 0 & 1/ky & 0 & 0\\ 0 & 0 & 1/kz & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

局部坐标转世界:

        我们需要明白一个概念,在3D空间中,假设有一个结点R存在一个子节点A,那么如果R就是坐标原点,A的局部坐标系就是世界坐标系。如果结点R存在旋转,平移等变换,那么A的局部坐标依旧不会变,R的变换会带动A的变换。那么最终的世界坐标满足关系式:

{A}'=M*A

M代表R的变换矩阵,A代表R在原点时的世界坐标(即局部坐标),A'代表最终的世界坐标。

再根据知识点1,得到矩阵M=平移矩阵A×旋转矩阵B×缩放矩阵C

便有如下代码:

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;public class Test : MonoBehaviour
{public Transform targetTrans;private void Start(){Vector4 startPos = new Vector4(targetTrans.localPosition.x, targetTrans.localPosition.y, targetTrans.localPosition.z, 1);Matrix4x4 scaleMatrix = ScaleMatrix(transform.localScale.x, transform.localScale.y, transform.localScale.z);Matrix4x4 rotateMatrix = RotateYMatrix(transform.eulerAngles.y)*RotateXMatrix(transform.eulerAngles.x)*RotateZMatrix(transform.eulerAngles.z);Matrix4x4 translateMatrix = TranslateMatrix(transform.position.x, transform.position.y, transform.position.z);//按照缩放->旋转(按照Z->X->Y顺序旋转)->平移的变换顺序Vector4 resPos = translateMatrix * rotateMatrix * scaleMatrix * startPos;Debug.Log(string.Format("局部坐标转世界坐标={0}",resPos));Debug.Log(string.Format("调用UnityAPI的结果={0}",transform.TransformPoint(startPos)));}//缩放矩阵private Matrix4x4 ScaleMatrix(float x,float y,float z){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = x;targetMatrix.m11 = y;targetMatrix.m22 = z;targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(X轴)private Matrix4x4 RotateXMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = 1;targetMatrix.m11 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m12 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m21 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m22 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(Y轴)private Matrix4x4 RotateYMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m02 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m11 = 1;targetMatrix.m20 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m22 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(Z轴)private Matrix4x4 RotateZMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m01 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m10 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m11 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m22 = 1;targetMatrix.m33 = 1;return targetMatrix;}//平移矩阵private Matrix4x4 TranslateMatrix(float x,float y,float z){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m03 = x;targetMatrix.m13 = y;targetMatrix.m23 = z;targetMatrix.m00 = 1;targetMatrix.m11 = 1;targetMatrix.m22 = 1;targetMatrix.m33 = 1;return targetMatrix;}
}

挂载脚本:

我们用了Unity自带的局部转世界的APITransform.TransformPoint进行结果对比,发现最终的计算结果是一样的(忽略第四个参数1.0,代表的含义是点)。

世界坐标转局部:

        由刚刚的{A}'=M*A公式推导,其实可以得到:

                                        ​​​​​​​                M^{-1}*{A}'=A

        即局部坐标=逆变换*世界坐标

由上面的性质得到已知  矩阵M=平移矩阵A×旋转矩阵B×缩放矩阵C,那么矩阵M的逆矩阵

                                                         M^{-1}=C^{-1}*B^{-1}*A^{-1}

矩阵A,B,C的逆矩阵都可以根据知识点2得到结果,最终就可以根据世界坐标和逆变换反推导局部坐标。

http://www.dinnco.com/news/80243.html

相关文章:

  • 韶关网站设计公司网站seo优化
  • wordpress如何建站呢最近一周新闻大事摘抄2022年
  • 东莞做网站微信巴巴营销培训总结
  • 厦门网站定制谈谈对seo的理解
  • 果女做拍的视频网站产品网站推广
  • 免费搭建网站教程中国十大小说网站排名
  • 建网站的公司不肯签合同怎样制作网页新手自学入门
  • 如何让自己的网站快速被百度收录竞价托管外包服务
  • 武汉设计网站建设做网站的公司哪家最好
  • 网站现在用h5做的吗搜索引擎优化的主要工作
  • 自己电脑做服务器搭建网站有域名网络推广公司是干嘛的
  • 该工具支持 preview 功能长沙百度快速优化排名
  • 应用网站模板无锡网站制作
  • 大连做网站多少钱全媒体运营师培训费用
  • 云南最大的互联网公司百度网盘seo优化
  • 哪里有网站制作价格全域seo
  • 珠海网站建设网络公司怎么样找回原来的百度
  • 如何查到网站是谁做的石家庄seo报价
  • 做门户网站起什么域名好西安seo黑
  • 做网站的详细流程以品牌推广为目的的广告网络平台
  • 小学生有没有必要学编程网络优化app哪个好
  • 关于加强网站建设与管理的通知郑州网站seo优化
  • 做牙的网站叫什么郑州粒米seo顾问
  • 网站的方案数据交换平台
  • 海南网站建设公司哪家好数据交换平台
  • 揭阳网站建设antnw关键词优化一年的收费标准
  • 怎样用代码建设一个网站b站视频推广网站2023
  • 做SEO公司多给网站bt kitty磁力猫
  • 深圳石岩网站建设搜索引擎下载安装
  • 手机版文章网站源码网站怎么优化排名的方法